[1] |
CADENA C, CARLONE L, CARRILLO H,
et al.. Past, present, and future of simultaneous localization and mapping:towards the robust-perception age[J].
IEEE Transactions on Robotics, 2016, 32(6):1309-1332.
doi:
10.1109/TRO.2016.2624754
|
[2] |
林辉灿, 吕强, 张洋, 等.稀疏和稠密的VSLAM的研究进展[J].机器人, 2016, 38(5):621-631.
http://d.old.wanfangdata.com.cn/Periodical/jqr201605014
LIN H C, LV Q, ZHANG Y,
et al.. The sparse and dense VSLAM:a survey[J].
ROBOT, 2016, 38(5):621-631.(in Chinese)
http://d.old.wanfangdata.com.cn/Periodical/jqr201605014
|
[3] |
梁明杰, 闵华清, 罗荣华.基于图优化的同时定位与地图创建综述[J].机器人, 2013, 35(4):500-512.
http://d.old.wanfangdata.com.cn/Periodical/jqr201304016
LIANG M J, MIN H Q, LUO R H. Graph-based SLAM:a survey[J].
ROBOT, 2013, 35(4):500-512.(in Chinese)
http://d.old.wanfangdata.com.cn/Periodical/jqr201304016
|
[4] |
CENSI A. Scan matching in a probabilistic framework[C]. IEEE International Conference on Robotics and Automation, 2006: 2291-2296.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1642044
|
[5] |
PARK, KIM D H, PARK M,
et al.. Spectral scan matching for robot pose estimation[J].
Electronics Letters, 2009, 45(21):1076-1077.
doi:
10.1049/el.2009.1355
|
[6] |
RÖWEKÄMPER J, SPRUNK C, TIPALDI G D,
et al.. On the position accuracy of mobile robot localization based on particle filters combined with scan matching[C]. IEEE International Conference on Intelligent Robots and Systems, 2012: 3158-3164.
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6385988
|
[7] |
HOUSHIAR H, ELSEBERG J, BORRMANN D,
et al.. A study of projections for key point based registration of panoramic terrestrial 3D laser scan[J].
Geo-spatial Information Science, 2015, 18(1):11-31.
http://d.old.wanfangdata.com.cn/Periodical/dqkjxxkxxb-e201501002
|
[8] |
PARK S, PARK S K. Spectral scan matching and its application to global localization for mobile robots[C]. IEEE International Conference on Robotics and Automation, 2010: 1361-1366.
|
[9] |
LEHTOLA V V, KAARTINEN H, NÜCHTER A,
et al.. Comparison of the selected state-of-the-art 3D indoor scanning and point cloud generation methods[J].
Remote Sensing, 2017, 9(8):796.
doi:
10.3390/rs9080796
|
[10] |
FURUKAWA T, DANTANARAYANA L, ZIGLAR J,
et al.. Fast global scan matching for high-speed vehicle navigation[C]. IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2015: 37-42.
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=7295742
|
[11] |
YOSHITAKA H, HIROHIKO K, AKIHISA O,
et al.. Mobile Robot localization and mapping by scan matching using laser reflection intensity of the SOKUIKI sensor[C]. IEEE Conference on Industrial Electronics, 2007: 3018-3023.
|
[12] |
BORRMANN D, ELSEBERG J, KAI L,
et al.. Globally consistent 3D mapping with scan matching[J].
Robotics
&
Autonomous Systems, 2008, 56(2):130-142.
http://www.sciencedirect.com/science/article/pii/S0921889007000863
|
[13] |
MARTINEZ J L, GONZALEZ J, MORALES J,
et al.. Mobile robot motion estimation by 2D scan matching with genetic and iterative closest point algorithms[J].
Journal of Field Robotics, 2006, 23(1):21-34.
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=450127f45c33d0ef5a2f8cd257b2c91b
|
[14] |
GAO Y, LIU S, ATIA M M,
et al.. INS/GPS/LiDAR integrated navigation system for urban and indoor environments using hybrid scan matching algorithm[J].
Sensors, 2015, 15(9):23286-23302.
doi:
10.3390/s150923286
|
[15] |
CHEN Y, MEDIONI G. Object modeling by registration of multiple range images[C]. Proceedings of IEEE International Conference on Robotics and Automation, 1991: 145-155.
|
[16] |
BESL P J, MCKAY H D. A method for registration of 3-D shapes[J].
IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2):239-256.
doi:
10.1109/34.121791
|
[17] |
LU F, MILIOS E E. Robot Pose Estimation in unknown environments by matching 2D range scans[J].
Journal of Intelligent and Robotic Systems, 1997, 18(3):249-275.
doi:
10.1023/A:1007957421070
|
[18] |
GUTMANN J S, SCHLEGEL C. AMOS: comparison of scan matching approaches for self-localization in indoor environments[C]. Proceedings of the First Euromicro Workshop on Advanced Mobile Robot, 1996: 61-67.
|
[19] |
COX I J. Blanche-an experiment in guidance and navigation of an autonomous robot vehicle[C]. International Conference on Robotics and Automation, 1991, 7(2): 193-204.
http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1109/70.75902&rfr_id=trans/tp/2002/02/ttp2002020237.htm
|
[20] |
MINGUEZ J, MONTESANO L, LAMIRAUX F. Metric-based iterative closest point scan matching for sensor displacement estimation[J].
IEEE Transactions on Robotics, 2006, 22(5):1047-1054.
doi:
10.1109/TRO.2006.878961
|
[21] |
CAMPBELL D, WHITTY M, LIM S. Mobile 3D indoor mapping using the continuous normal distributions transform[C]. IEEE International Conference on Indoor Positioning and Indoor Navigation, 2012: 1-9.
|
[22] |
BOSSE M C. ATLAS: a framework for large scale automated mapping and localization[D]. Massachusetts Institute of Technology, 2004.
http://dl.acm.org/citation.cfm?id=1023391
|
[23] |
CENSI A. An ICP variant using a point-to-line metric[C]. IEEE International Conference on Robotics and Automation, 2008: 19-25.
http://ieeexplore.ieee.org/document/4543181/
|
[24] |
BOSSE M, ZLOT R. Continuous 3D scan-matching with a spinning 2D laser[C]. IEEE International Conference on Robotics and Automation, 2009: 4244-4251.
|
[25] |
李明磊, 李广云, 王力, 等.采用八叉树体素生长的点云平面提取[J].光学精密工程, 2018, 26(1):172-183.
http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201801021
LI M L, LI G Y, WANG L,
et al.. Planar feature extraction from unorganized point clouds using octree voxel-based region growing[J].
Opt. Precision Eng., 2018, 26(1):172-183.(in Chinese)
http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201801021
|
[26] |
SEGAL A, HAEHNEL D, THRUN S. Generalized-ICP[C]. Robotics: Science and Systems, 2009, 2(4): 435.
|
[27] |
SERAFIN J, GRISETTI G. Using augmented measurements to improve the convergence of icp[C]. International Conference on Simulation, Modeling, and Programming for Autonomous Robots. Springer, Cham, 2014: 566-577.
Using augmented measurements to improve the convergence of icp
|
[28] |
SERAFIN J, GRISETTI G. NICP: dense normal based point cloud registration[C]. IEEE International Conference on Intelligent Robots and Systems, 2015: 742-749.
|
[29] |
LV J, YUKINORI K, RAVANKAR A A,
et al.. A solution to estimate robot motion with large rotation by matching laser scans[C]. IEEE Society of Instrument and Control Engineers of Japan, 2015: 1083-1088.
http://ieeexplore.ieee.org/document/7285356/
|
[30] |
YANG J, LI H, JIA Y. Go-ICP: solving 3D registration efficiently and globally optimally[C]. IEEE International Conference on Computer Vision. IEEE Computer Society, 2013: 1457-1464.
|
[31] |
HAN J D, YIN P, HE Y Q,
et al.. Enhanced ICP for the registration of large-scale 3D environment models:an experimental study[J].
Sensors, 2016, 16(2):228.
doi:
10.3390/s16020228
|
[32] |
HONG S, KO H, KIM J. VICP: velocity updating iterative closest point algorithm[C]. IEEE International Conference on Robotics and Automation, 2012: 1893-1898.
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5509312
|
[33] |
ALISMAIL H, BAKER L D, BROWNING B. Continuous trajectory estimation for 3D SLAM from actuated lidar[C]. IEEE International Conference on Robotics and Automation, 2014: 6096-6101.
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6907757
|
[34] |
RUSINKIEWICZ S, LEVOY M. Efficient variants of the ICP algorithm[C]. Proceedings of IEEE International Conference on 3-D Digital Imaging and Modeling, 2001: 145-152.
|
[35] |
POMERLEAU F, COLAS F, SIEGWART R,
et al.. Comparing ICP variants on real-world data sets[J].
Autonomous Robots, 2013, 34(3):133-148.
doi:
10.1007/s10514-013-9327-2
|
[36] |
GELFAND N, IKEMOTO L, RUSINKIEWICZ S,
et al.. Geometrically stable sampling for the ICP algorithm[C]. Proceedings of IEEE International Conference on 3-D Digital Imaging and Modeling, 2003: 260-267.
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1240258
|
[37] |
MONTESANO L, MINGUEZ J, MONTANO L. Probabilistic scan matching for motion estimation in unstructured environments[C]. IEEE International Conference on Intelligent Robots and Systems, 2005: 3499-3504.
|
[38] |
DIOSI A, KLEEMAN L. Laser scan matching in polar coordinates with application to SLAM[C]. IEEE International Conference on Intelligent Robots and Systems, 2005: 3317-3322.
|
[39] |
DIOSI A, KLEEMAN L. Fast laser scan matching using polar coordinates[J].
International Journal of Robotics Research, 2007, 26(10):1125-1153.
doi:
10.1177/0278364907082042
|
[40] |
CAI Z S, HONG B R, LI H. An improved polar scan matching using genetic algorithm[J].
Information Technology Journal, 2007, 6(1):89-95.
doi:
10.3923/itj.2007.89.95
|
[41] |
CHEN F, CHOPRA I, RAND O. Perimeter-based polar scan matching(PB-PSM) for 2D laser odometry[J].
Journal of Intelligent
&
Robotic Systems, 2015, 80(2):231-254.
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=25d5e73393dd6ea35dfdb9dab8853a36
|
[42] |
TSARDOULIAS E, PETROU L. Critical rays scan match SLAM[J].
Journal of Intelligent
&
Robotic Systems, 2013, 72(3-4):441-462.
http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0231654603/
|
[43] |
BONNABEL S, BARCZYK M, GOULETTE F,
et al.. On the covariance of ICP-based scan-matching techniques[C].
American Control Conference(ACC), 2016: 5498-5503.
|
[44] |
CENSI A. On achievable accuracy for range-finder localization[C]. IEEE International Conference on Robotics and Automation, 2007: 4170-4175.
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4209738
|
[45] |
OLSON E B. Real-time correlative scan matching[C]. IEEE International Conference on Robotics and Automation, 2009: 1233-1239.
|
[46] |
ELSEBERG J, MAGNENAT S, SIEGWART R,
et al.. Comparison on nearest-neigbour-search strategies and implementations for efficient shape registration[J].
Annual Report of Natural Science
&
Home Economics Kinjo Gakuin College, 2012, 22(3):268-269.
|
[47] |
NÜCHTER A, KAI L, HERTZBERG J,
et al.. 6D SLAM-3D mapping outdoor environments[J].
Journal of Field Robotics, 2007, 24(8-9):699-722.
doi:
10.1002/(ISSN)1556-4967
|
[48] |
VERDOJA F, THOMAS D, SUGIMOTO A. Fast 3D point cloud segmentation using supervoxels with geometry and color for 3D scene understanding[C]. IEEE International Conference on Multimedia and Expo. IEEE Computer Society, 2017: 1285-1290.
|
[49] |
JENSFELT P, KRISTENSEN S. Active global localization for a mobile robot using multiple hypothesis tracking[J].
IEEE Transactions on Robotics
&
Automation, 2001, 17(5):748-760.
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1f0043a8e72e54b429b6fe8810a8e555
|
[50] |
NAKAMURA T, TASHITA Y. Congruence transformation invariant feature descriptor for robust 2D scan matching[C]. IEEE International Conference on Systems, Man, and Cybernetics, 2014: 1648-1653.
http://dl.acm.org/citation.cfm?id=2571272.2572330&coll=DL&dl=GUIDE&CFID=420369950&CFTOKEN=21427784
|
[51] |
NAKAMURA T, WAKITA S. Robust global scan matching method using congruence transformation invariant feature descriptors and a geometric constraint between keypoints[J].
Transactions of the Society of Instrument
&
Control Engineers, 2015, 51(5):309-318.
http://europepmc.org/abstract/MED/5610708
|
[52] |
TALEGHANI S, SHARBAFI M A, HAGHIGHAT A T,
et al.. ICE matching, a robust mobile robot localization with application to SLAM[C]. IEEE International Conference on TOOLS with Artificial Intelligence. IEEE Computer Society, 2010: 186-192.
|
[53] |
MOHAMED H A, MOUSSA A M, ELHABIBY M M,
et al.. Improved real-time scan matching using corner features[C]. ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XLI-B5: 533-539.
|
[54] |
TIPALDI G D, BRAUN M, ARRAS K O. FLIRT: Interest regions for 2D range data with applications to robot navigation[C]. Experimental Robotics. Springer Berlin Heidelberg, 2014: 695-710.
|
[55] |
TOMBARI F, SALTI S, STEFANO L D. Performance evaluation of 3D keypoint detectors[J].
International Journal of Computer Vision, 2013, 102(1-3):198-220.
doi:
10.1007/s11263-012-0545-4
|
[56] |
GUO Y, BENNAMOUN M, SOHEL F,
et al.. A comprehensive performance evaluation of 3D local feature descriptors[J].
International Journal of Computer Vision, 2016, 116(1):66-89.
doi:
10.1007/s11263-015-0824-y
|
[57] |
LIU S, ATIA M M, GAO Y,
et al.. Adaptive covariance estimation method for LiDAR-aided multi-sensor integrated navigation systems[J].
Micromachines, 2015, 6(2):196-215.
doi:
10.3390/mi6020196
|
[58] |
SIADAT A, KASKE A, KLAUSMANN S,
et al.. An optimized segmentation method for a 2D laser-scanner applied to mobile robot navigation[C]. IFAC Proceedings, 1997, 30(7): 149-154.
|
[59] |
GRISETTI G, IOCCHI L, NARDI D. Global Hough localization for mobile robots in polygonal environments[C]. Proceedings of IEEE International Conference on Robotics and Automation, 2002(1): 353-358.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1013386
|
[60] |
CENSI A, IOCCHI L, GRISETTI G. Scan matching in the Hough domain[C]. IEEE International Conference on Robotics and Automation, 2006: 2739-2744
|
[61] |
ZEZHONG X, JILIN L, ZHIYU X. Scan matching based on CLS relationships[C]. Proceedings of IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, 2003, 1: 99-104.
http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=WFHYXW83869
|
[62] |
MAZURAN M, AMIGONI F. Matching line segment scans with mutual compatibility constraints[C]. IEEE International Conference on Robotics and Automation(ICRA 2014), 2014: 4298-4303.
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6907484
|
[63] |
NUÑEZ P, VÁZQUEZ-MART N R, TORO J C D,
et al.. Natural landmark extraction for mobile robot navigation based on an adaptive curvature estimation[J].
Robotics
&
Autonomous Systems, 2008, 56(3):247-264.
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=41e84f4c7adaf4845fbec6a90c6e2beb
|
[64] |
YUAN X, ZHAO C, TANG Z,
et al.. Lidar scan-matching for mobile robot localization[J].
Information Technology Journal, 2010, 9(1):27-33.
doi:
10.3923/itj.2010.27.33
|
[65] |
LI J, ZHONG R, HU Q,
et al.. Feature-based laser scan matching and its application for indoor mapping[J].
Sensors, 2016, 16(8):1265.
doi:
10.3390/s16081265
|
[66] |
TOMONO M. A scan matching method using Euclidean invariant signature for global localization and map building[C]. Proceedings of IEEE International Conference on Robotics and Automation, 2004. ICRA. IEEE, 2004: 866-871 Vol.1.
|
[67] |
NOBILI S, SCONA R, CARAVAGNA M,
et al.. Overlap-based ICP tuning for robust localization of a humanoid robot[C]. Proceedings of IEEE International Conference on Robotics and Automation, 2017: 4721-4728.
|
[68] |
SERAFIN J, OLSON E, GRISETTI G. Fast and robust 3D feature extraction from sparse point clouds[C]. Proceedings of IEEE International Conference on Intelligent Robots and Systems, 2016: 4105-4112.
http://ieeexplore.ieee.org/document/7759604/
|
[69] |
ZHANG J, SINGH S. Low-drift and real-time lidar odometry and mapping[J].
Autonomous Robots, 2017, 41(2):401-416.
doi:
10.1007/s10514-016-9548-2
|
[70] |
RUSU R B, BLODOW N, MARTON Z,
et al.. Aligning point cloud views using persistent feature histograms[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS 2008), Sep.2008: 3384-3391.
|
[71] |
RUSU R B, BLODOW N, BEETZ M. Fast point feature histograms(FPFH) for 3D registration[C]. IEEE International Conference on Robotics and Automation, 2009: 1848-1853.
|
[72] |
JIANG J, CHENG J, CHEN X. Registration for 3-D point cloud using angular-invariant feature[J].
Neurocomputing, 2009, 72(16):3839-3844.
doi:
10.1016-j.neucom.2009.05.013/
|
[73] |
NUÑEZ P, VÁZQUEZMART N R, BANDERA A,
et al.. Fast laser scan matching approach based on adaptive curvature estimation for mobile robots[J].
Robotica, 2009, 27(3):469-479.
http://journals.cambridge.org/abstract_S0263574708004840
|
[74] |
CHONG Z J, QIN B, BANDYOPADHYAY T,
et al.. Synthetic 2D LIDAR for precise vehicle localization in 3D urban environment[C]. IEEE International Conference on Robotics and Automation, 2013: 1554-1559.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6630777
|
[75] |
SHU L, XU H, HUANG M. High-speed and accurate laser scan matching using classified features[C]. IEEE International Symposium on Robotic and Sensors Environments, 2014: 61-66.
http://ieeexplore.ieee.org/document/6698419/
|
[76] |
RAMOS F T, FOX D, DURRANT-WHYTE H F. CRF-matching: conditional random fields for feature-based scan matching[C]. Robotics: Science and Systems, 2007.
|
[77] |
RYU H, WAN K C. Efficient scan matching method using direction distribution[J].
Electronics Letters, 2015, 51(9):686-688.
doi:
10.1049/el.2014.4034
|
[78] |
SEHGAL A, CERNEA D, MAKAVEEVA M. Real-time scale invariant 3d range point cloud registration[C]. International Conference on Image Analysis and Recognition. Springer-Verlag, 2010: 220-229.
http://dl.acm.org/citation.cfm?id=2176924.2176951
|
[79] |
STEDER B, RUSU R B, KONOLIGE K,
et al.. NARF: 3D range image features for object recognition[C]. Workshop on Defining and Solving Realistic Perception Problems in Personal Robotics at the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems(IROS), 2010: 44.
|
[80] |
OLSON E. M3RSM: many-to-many multi-resolution scan matching[C]. 2015 IEEE International Conference on Robotics and Automation(ICRA 2015), 2015: 5815-5821.
|
[81] |
RAY R, BANERJI D, NANDY S,
et al.. Keypoints based laser scan matching-a robust approach[C]. IEEE International Conference on Robotics and Biomimetics, 2012: 741-746.
|
[82] |
LENAC K, KITANOV A, CUPEC R,
et al.. Fast planar surface 3D SLAM using LIDAR[J].
Robotics
&
Autonomous Systems, 2017, 92:197-220.
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1f1613a46b4f8cfd3a3d47ccf6d1d075
|
[83] |
MOHAMED H, MOUSSA A, ELHABIBY M,
et al.. A novel real-time reference key frame scan matching method[J].
Sensors, 2017, 17(5):1060-1088.
doi:
10.3390/s17051060
|
[84] |
HUANG X, ZHENG B, MASUDA T,
et al.. Robust 3D features for matching between distorted range scans captured by moving systems[C]. IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2014: 2957-2964.
|
[85] |
BIBER P, STRA ER W. The normal distributions transform: a new approach to laser scan matching[C]. Proceedings of 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS 2003), 2003, 3: 2743-2748.
|
[86] |
MAGNUSSON M, LILIENTHAL A, DUCKETT T. Scan registration for autonomous mining vehicles using 3D-NDT[J].
Journal of Field Robotics, 2007, 24(10):803-827.
doi:
10.1002/(ISSN)1556-4967
|
[87] |
BIBER P, FLECK S, STRA ER W. A probabilistic framework for robust and accurate matching of point clouds[C]. Joint Pattern Recognition Symposium. Springer, Berlin, Heidelberg, 2004: 480-487.
http://www.springerlink.com/content/306ffbk2a4rnyqc8
|
[88] |
MAGNUSSON M. The three-dimensional normal-distributions transform: an efficient representation for registration, surface analysis, and loop detection[D]. rebro University, 2009.
|
[89] |
STOYANOV T D, MAGNUSSON M, ANDREASSON H,
et al.. Fast and accurate scan registration through minimization of the distance between compact 3D NDT representations[J].
International Journal of Robotics Research, 2012, 31(12):1377-1393.
doi:
10.1177/0278364912460895
|
[90] |
MAGNUSSON M, VASKEVICIUS N, STOYANOV T,
et al.. Beyond points: Evaluating recent 3D scan-matching algorithms[C]. IEEE International Conference on Robotics and Automation, 2015: 3631-3637.
|
[91] |
WEI G, PUTTKAMER E. A map based on laser scans without geometric interpretation[C]. Intelligent Autonomous Systems, 1995, 4(2): 403-407.
|
[92] |
KONECNY J, PRAUZEK M, KROMER P,
et al.. Novel point-to-point scan matching algorithm based on cross-correlation[J].
Mobile Information Systems, 2016(15):1-11.
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003970137
|
[93] |
LEORDEANU M, HEBERT M. A spectral technique for correspondence problems using pairwise constraints[C]. IEEE International Conference on Computer Vision. IEEE Computer Society, 2005: 1482-1489.
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1544893
|
[94] |
WANG X, JIA Y, XI N,
et al.. Mobile robot pose estimation using laser scan matching based on Fourier transform[C]. IEEE International Conference on Robotics and Biomimetics, 2014: 474-479.
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6739504
|
[95] |
Kim H, Dugarjav B, Lee K H,
et al. A study on scan matching method using procrustes analysis[C]. International Conference on Control, Automation and Systems, 2014: 1027-1030.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6987941
|
[96] |
PEDROSA E, PEREIRA A, LAU N. A scan matching approach to SLAM with a dynamic likelihood field[C]. International Conference on Autonomous Robot Systems and Competitions, 2016: 35-40.
|
[97] |
BOUGHORBEL F, KOSCHAN A, ABIDI B,
et al.. Gaussian fields:a new criterion for 3D rigid registration[J].
Pattern Recognition, 2004, 37(7):1567-1571.
doi:
10.1016/j.patcog.2004.02.005
|
[98] |
LENAC K, MUMOLO E, NOLICH M.
Fast Genetic Scan Matching in Mobile Robotics[M]. Evolutionary Image Analysis and Signal Processing. Springer Berlin Heidelberg, 2009: 133-152.
|
[99] |
KROMER P, KONECNY J, PRAUZEK M. Point-based scan matching by differential evolution[C]. International Conference on Intelligent NETWORKING and Collaborative Systems, 2016: 215-221.
|
[100] |
WULF O, NÜCHTER A, HERTZBERG J,
et al.. Benchmarking urban six-degree-of-freedom simultaneous localization and mapping[J].
Journal of Field Robotics, 2008, 25(3):148-163.
doi:
10.1002/rob.v25:3
|
[101] |
DU Q H. Metrics for 3D Rotations:Comparison and Analysis[J].
Journal of Mathematical Imaging & Vision, 2009, 35(2):155-164.
http://dl.acm.org/citation.cfm?id=1574531
|
[102] |
MAGNUSSON M, NUCHTER A, LORKEN C,
et al.. Evaluation of 3D registration reliability and speed-a comparison of ICP and NDT[C]. IEEE International Conference on Robotics and Automation, 2009: 2263-2268.
http://dl.acm.org/citation.cfm?id=1703817
|
[103] |
PATHAK K, BORRMANN D, ELSEBERG J,
et al.. Evaluation of the robustness of planar-patches based 3D-registration using marker-based ground-truth in an outdoor urban scenario[C]. Ieee/rsj International Conference on Intelligent Robots and Systems, 2010: 5725-5730.
|
[104] |
PATHAK K, BIRK A, VAŠKEVIČIUS N,
et al.. Fast registration based on noisy planes with unknown correspondences for 3-D mapping[J].
IEEE Transactions on Robotics, 2010, 26(3):424-441.
doi:
10.1109/TRO.2010.2042989
|
[105] |
LI Q, M LLER F, WENZEL A,
et al.. Simulation-based comparison of 2D scan matching algorithms for different rangefinders[C]. 201621st International Conference on Methods and Models in Automation and Robotics(MMAR), 2016: 924-929.
http://ieeexplore.ieee.org/abstract/document/7575261/
|
[106] |
ELBAZ G, AVRAHAM T, FISCHER A. 3D point cloud registration for localization using a deep neural network auto-encoder[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR 2017), 2017: 2472-2481.
http://ieeexplore.ieee.org/document/8099748/
|
[107] |
BEDKOWSKI J M, RÖHLING T. Online 3D LIDAR Monte Carlo localization with GPU acceleration[J].
Industrial Robot, 2017, 44(4).
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=36434d2fa5393edb2ff0860e3ce11c3d
|