[1] |
ARIZMENDI L. Photonic applications of lithium niobate crystals[J].
Physica Status Solidi (A), 2004, 201(2): 253-283.
doi:
10.1002/pssa.200303911
|
[2] |
WEIS R S, GAYLORD T K. Lithium niobate: summary of physical properties and crystal structure[J].
Applied Physics A, 1985, 37(4): 191-203.
doi:
10.1007/BF00614817
|
[3] |
WU R B, WANG M, XU J,
et al.. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness[J].
Nanomaterials, 2018, 8(11): 910.
doi:
10.3390/nano8110910
|
[4] |
ZHU D, SHAO L B, YU M J,
et al.. Integrated photonics on thin-film lithium niobate[J].
Advances in Optics and Photonics, 2021, 13(2): 242-352.
doi:
10.1364/AOP.411024
|
[5] |
RABIEI P, GUNTER P. Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding[J].
Applied Physics Letters, 2004, 85(20): 4603-4605.
doi:
10.1063/1.1819527
|
[6] |
POBERAJ G, HU H, SOHLER W,
et al.. Lithium niobate on insulator (LNOI) for micro-photonic devices[J].
Laser & Photonics Reviews, 2012, 6(4): 488-503.
|
[7] |
LEVY M, RADOJEVIC A M. Single-crystal lithium niobate films by crystal ion slicing[M]//ALEXE M, GÖSELE U. Wafer Bonding: Applications and Technology. Berlin: Springer, 2004: 417-450.
|
[8] |
ZHANG M, BUSCAINO B, WANG CH,
et al.. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J].
Nature, 2019, 568(7752): 373-377.
doi:
10.1038/s41586-019-1008-7
|
[9] |
XU M Y, HE M B, ZHANG H G,
et al.. High-performance coherent optical modulators based on thin-film lithium niobate platform[J].
Nature Communications, 2020, 11(1): 3911.
doi:
10.1038/s41467-020-17806-0
|
[10] |
WANG CH, ZHANG M, CHEN X,
et al.. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J].
Nature, 2018, 562(7725): 101-104.
doi:
10.1038/s41586-018-0551-y
|
[11] |
WANG CH, LANGROCK C, MARANDI A,
et al.. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides[J].
Optica, 2018, 5(11): 1438-1441.
doi:
10.1364/OPTICA.5.001438
|
[12] |
LIN J T, YAO N, HAO ZH ZH,
et al.. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator[J].
Physical Review Letters, 2019, 122(17): 173903.
doi:
10.1103/PhysRevLett.122.173903
|
[13] |
HE M B, XU M Y, REN Y X,
et al.. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1
and beyond[J].
Nature Photonics, 2019, 13(5): 359-364.
doi:
10.1038/s41566-019-0378-6
|
[14] |
CAI L T, KONG R R, WANG Y W,
et al.. Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film[J].
Optics Express, 2015, 23(22): 29211-29221.
doi:
10.1364/OE.23.029211
|
[15] |
CAI L T, WANG Y W, HU H. Low-loss waveguides in a single-crystal lithium niobate thin film[J].
Optics Letters, 2015, 40(13): 3013-3016.
doi:
10.1364/OL.40.003013
|
[16] |
HU H, YANG J, GUI L,
et al.. Lithium niobate-on-insulator (LNOI): status and perspectives[J].
Proceedings of SPIE, 2012, 8431: 84311D.
|
[17] |
KRASNOKUTSKA I, TAMBASCO J L J, LI X J,
et al.. Ultra-low loss photonic circuits in lithium niobate on insulator[J].
Optics Express, 2018, 26(2): 897-904.
doi:
10.1364/OE.26.000897
|
[18] |
ULLIAC G, COURJAL N, CHONG H M H,
et al.. Batch process for the fabrication of LiNbO3
photonic crystals using proton exchange followed by CHF3
reactive ion etching[J].
Optical Materials, 2008, 31(2): 196-200.
doi:
10.1016/j.optmat.2008.03.004
|
[19] |
DONG P, QIAN W, LIAO SH R,
et al.. Low loss shallow-ridge silicon waveguides[J].
Optics Express, 2010, 18(14): 14474-14479.
doi:
10.1364/OE.18.014474
|
[20] |
GUTIERREZ A M, BRIMONT A, AAMER M,
et al.. Method for measuring waveguide propagation losses by means of a Mach–Zehnder Interferometer structure[J].
Optics Communications, 2012, 285(6): 1144-1147.
doi:
10.1016/j.optcom.2011.11.064
|
[21] |
TAEBI S, KHORASANINEJAD M, SAINI S S. Modified fabry-perot interferometric method for waveguide loss measurement[J].
Applied Optics, 2008, 47(35): 6625-6630.
doi:
10.1364/AO.47.006625
|
[22] |
HE Y M, LI ZH S, LU D. A waveguide loss measurement method based on the reflected interferometric pattern of a Fabry-Perot cavity[J].
Proceedings of SPIE, 2018, 10535: 105351U.
|
[23] |
HOLLAND J H.
Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence[M]. Cambridge: The MIT Press, 1992.
|
[24] |
ALONSO J M, ALVARRUIZ F, DESANTES J M,
et al.. Combining neural networks and genetic algorithms to predict and reduce diesel engine emissions[J].
IEEE Transactions on Evolutionary Computation, 2007, 11(1): 46-55.
doi:
10.1109/TEVC.2006.876364
|
[25] |
VERMA R, LAKSHMINIARAYANAN P A. A case study on the application of a genetic algorithm for optimization of engine parameters[J].
Proceedings of the Institution of Mechanical Engineers,
Part D:
Journal of Automobile Engineering, 2006, 220(4): 471-479.
|
[26] |
BAHADORI M, NIKDAST M, CHENG Q X,
et al.. Universal design of waveguide bends in silicon-on-insulator photonics platform[J].
Journal of Lightwave Technology, 2019, 37(13): 3044-3054.
doi:
10.1109/JLT.2019.2909983
|
[27] |
THYAGARAJAN K, SHENOY M R, GHATAK A K. Accurate numerical method for the calculation of bending loss in optical waveguides using a matrix approach[J].
Optics Letters, 1987, 12(4): 296-298.
doi:
10.1364/OL.12.000296
|
[28] |
HAN ZH H, ZHANG P, BOZHEVOLNYI S I. Calculation of bending losses for highly confined modes of optical waveguides with transformation optics[J].
Optics Letters, 2013, 38(11): 1778-1780.
doi:
10.1364/OL.38.001778
|
[29] |
STENGER V E, TONEY J, PONICK A,
et al. Low loss and low vpi thin film lithium niobate on quartz electro-optic modulators[C].
2017 European Conference on Optical Communication
(ECOC), IEEE, 2017: 1-3.
|
[30] |
LI X P, CHEN K X, HU ZH F. Low-loss bent channel waveguides in lithium niobate thin film by proton exchange and dry etching[J].
Optical Materials Express, 2018, 8(5): 1322-1327.
doi:
10.1364/OME.8.001322
|
[31] |
REN T H, ZHANG M, WANG CH,
et al.. An integrated low-voltage broadband lithium niobate phase modulator[J].
IEEE Photonics Technology Letters, 2019, 31(11): 889-892.
doi:
10.1109/LPT.2019.2911876
|
[32] |
DING T T, ZHENG Y L, CHEN X F. On-chip solc-type polarization control and wavelength filtering utilizing periodically poled lithium niobate on insulator ridge waveguide[J].
Journal of Lightwave Technology, 2019, 37(4): 1296-1300.
doi:
10.1109/JLT.2019.2892317
|
[33] |
VLASOV Y A, MCNAB S J. Losses in single-mode silicon-on-insulator strip waveguides and bends[J].
Optics Express, 2004, 12(8): 1622-1631.
doi:
10.1364/OPEX.12.001622
|
[34] |
WON Y H, JAUSSAUD P C, CHARTIER G H. Three-prism loss measurements of optical waveguides[J].
Applied Physics Letters, 1980, 37(3): 269-271.
doi:
10.1063/1.91903
|
[35] |
REGENER R, SOHLER W. Loss in low-finesse Ti: LiNbO3
optical waveguide resonators[J].
Applied Physics B, 1985, 36(3): 143-147.
|