[1] |
BETZIG E, TRAUTMAN J K, HARRIS T D,
et al. Breaking the diffraction barrier: optical microscopy on a nanometric scale[J].
Science, 1991, 251(5000): 1468-1470.
doi:
10.1126/science.251.5000.1468
|
[2] |
AXELROD D. Total internal reflection fluorescence microscopy in cell biology[J].
Traffic, 2001, 2(11): 764-774.
doi:
10.1034/j.1600-0854.2001.21104.x
|
[3] |
HELL S W. Toward fluorescence nanoscopy[J].
Nature Biotechnology, 2003, 21(11): 1347-1355.
doi:
10.1038/nbt895
|
[4] |
EGGELING C, RINGEMANN C, MEDDA R,
et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell[J].
Nature, 2009, 457(7233): 1159-1162.
doi:
10.1038/nature07596
|
[5] |
BETZIG E, PATTERSON G H, SOUGRAT R,
et al. Imaging intracellular fluorescent proteins at nanometer resolution[J].
Science, 2006, 313(5793): 1642-1645.
doi:
10.1126/science.1127344
|
[6] |
RUST M J, BATES M, ZHUANG X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J].
Nature Methods, 2006, 3(10): 793-796.
doi:
10.1038/nmeth929
|
[7] |
THOMPSON R E, LARSON D R, WEBB W W. Precise nanometer localization analysis for individual fluorescent probes[J].
Biophysical Journal, 2002, 82(5): 2775-2783.
doi:
10.1016/S0006-3495(02)75618-X
|
[8] |
GUSTAFSSON M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J].
Journal of Microscopy, 2000, 198(2): 82-87.
doi:
10.1046/j.1365-2818.2000.00710.x
|
[9] |
WU Y, SHROFF H. Faster, sharper, and deeper: structured illumination microscopy for biological imaging[J].
Nature Methods, 2018, 15(12): 1011-1019.
doi:
10.1038/s41592-018-0211-z
|
[10] |
GUSTAFSSON M G L, SHAO L, CARLTON P M,
et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination[J].
Biophysical Journal, 2008, 94(12): 4957-4970.
doi:
10.1529/biophysj.107.120345
|
[11] |
SHROFF S A, FIENUP J R, WILLIAMS D R. Phase-shift estimation in sinusoidally illuminated images for lateral superresolution[J].
Journal of the Optical Society of America A, 2009, 26(2): 413-424.
doi:
10.1364/JOSAA.26.000413
|
[12] |
WICKER K, MANDULA O, BEST G,
et al. Phase optimisation for structured illumination microscopy[J].
Optics Express, 2013, 21(2): 2032-2049.
doi:
10.1364/OE.21.002032
|
[13] |
ZHOU X, LEI M, DAN D,
et al. Image recombination transform algorithm for superresolution structured illumination microscopy[J].
Journal of Biomedical Optics, 2016, 21(9): 096009.
doi:
10.1117/1.JBO.21.9.096009
|
[14] |
CHU K Q, MCMILLAN P J, SMITH Z J,
et al. Image reconstruction for structured-illumination microscopy with low signal level[J].
Optics Express, 2014, 22(7): 8687-8702.
doi:
10.1364/OE.22.008687
|
[15] |
HUANG X SH, FAN J CH, LI L J,
et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy[J].
Nature Biotechnology, 2018, 36(5): 451-459.
doi:
10.1038/nbt.4115
|
[16] |
ZHOU B, HUANG X SH, FAN J CH,
et al. sCMOS noise-corrected superresolution reconstruction algorithm for structured illumination microscopy[J].
Photonics, 2022, 9(3): 172.
doi:
10.3390/photonics9030172
|
[17] |
WEN G, LI S M, WANG L B,
et al. High-fidelity structured illumination microscopy by point-spread-function engineering[J].
Light:Science
&Applications, 2021, 10(1): 70.
|
[18] |
PEREZ V, CHANG B J, STELZER E H K. Optimal 2D-SIM reconstruction by two filtering steps with Richardson-Lucy deconvolution[J].
Scientific Reports, 2016, 6: 37149.
doi:
10.1038/srep37149
|
[19] |
SMITH C S, SLOTMAN J A, SCHERMELLEH L,
et al. Structured illumination microscopy with noise-controlled image reconstructions[J].
Nature Methods, 2021, 18(7): 821-828.
doi:
10.1038/s41592-021-01167-7
|
[20] |
WANG H D, RIVENSON Y, JIN Y Y,
et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy[J].
Nature Methods, 2019, 16(1): 103-110.
doi:
10.1038/s41592-018-0239-0
|
[21] |
JIN L H, LIU B, ZHAO F Q,
et al. Deep learning enables structured illumination microscopy with low light levels and enhanced speed[J].
Nature Communications, 2020, 11(1): 1934.
doi:
10.1038/s41467-020-15784-x
|
[22] |
ZHANG Y L, LI K P, LI K,
et al. . Image super-resolution using very deep residual channel attention networks[C].
Proceedings of the 15th European Conference on Computer Vision, Springer, 2018: 294-310.
|
[23] |
CHEN J J, SASAKI H, LAI H,
et al. Three-dimensional residual channel attention networks denoise and sharpen fluorescence microscopy image volumes[J].
Nature Methods, 2021, 18(6): 678-687.
doi:
10.1038/s41592-021-01155-x
|
[24] |
QIAO CH, LI D, GUO Y T, LIU CH,
et al. Evaluation and development of deep neural networks for image super-resolution in optical microscopy[J].
Nature Methods, 2021, 18(2): 194-202.
doi:
10.1038/s41592-020-01048-5
|
[25] |
SCHULZ O, PIEPER C, CLEVER M,
et al. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy[J].
Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(52): 21000-21005.
doi:
10.1073/pnas.1315858110
|
[26] |
ZHAO W S, ZHAO SH Q, LI L J,
et al. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy[J].
Nature Biotechnology, 2022, 40(4): 606-617.
doi:
10.1038/s41587-021-01092-2
|
[27] |
NIEUWENHUIZEN R P J, LIDKE K A, BATES M,
et al. Measuring image resolution in optical nanoscopy[J].
Nature Methods, 2013, 10(6): 557-562.
doi:
10.1038/nmeth.2448
|
[28] |
BANTERLE N, BUI K H, LEMKE E A,
et al. Fourier ring correlation as a resolution criterion for super-resolution microscopy[J].
Journal of Structural Biology, 2013, 183(3): 363-367.
doi:
10.1016/j.jsb.2013.05.004
|
[29] |
ROSENTHAL P B, HENDERSON R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy[J].
Journal of Molecular Biology, 2003, 333(4): 721-745.
doi:
10.1016/j.jmb.2003.07.013
|
[30] |
SAXTON W O, BAUMEISTER W. The correlation averaging of a regularly arranged bacterial cell envelope protein[J].
Journal of Microscopy, 1982, 127(2): 127-138.
doi:
10.1111/j.1365-2818.1982.tb00405.x
|
[31] |
DESCLOUX A, GRUßMAYER K S, RADENOVIC A. Parameter-free image resolution estimation based on decorrelation analysis[J].
Nature Methods, 2019, 16(9): 918-924.
doi:
10.1038/s41592-019-0515-7
|
[32] |
CULLEY S, ALBRECHT D, JACOBS C,
et al. Quantitative mapping and minimization of super-resolution optical imaging artifacts[J].
Nature Methods, 2018, 15(4): 263-266.
doi:
10.1038/nmeth.4605
|
[33] |
BALL G, DEMMERLE J, KAUFMANN R,
et al. . SIMcheck: a toolbox for successful super-resolution structured illumination microscopy[J].
Scientific Reports, 2015, 5: 15915.
|
[34] |
FIOLKA R, BECK M, STEMMER A. Structured illumination in total internal reflection fluorescence microscopy using a spatial light modulator[J].
Optics Letters, 2008, 33(14): 1629-1631.
doi:
10.1364/OL.33.001629
|
[35] |
KNER P, CHHUN B B, GRIFFIS E R,
et al. Super-resolution video microscopy of live cells by structured illumination[J].
Nature Methods, 2009, 6(5): 339-342.
doi:
10.1038/nmeth.1324
|
[36] |
LI D, SHAO L, CHEN B CH,
et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics[J].
Science, 2015, 349(6251): aab3500.
doi:
10.1126/science.aab3500
|
[37] |
NIXON-ABELL J, OBARA C J, WEIGEL A V,
et al. Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER[J].
Science, 2016, 354(6311): aaf3928.
doi:
10.1126/science.aaf3928
|
[38] |
GUO Y T, LI D, ZHANG S W,
et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales[J].
Cell, 2018, 175(5): 1430-1442.e17.
doi:
10.1016/j.cell.2018.09.057
|
[39] |
YORK A G, PAREKH S H, NOGARE D D,
et al. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy[J].
Nature Methods, 2012, 9(7): 749-754.
doi:
10.1038/nmeth.2025
|
[40] |
YORK A G, CHANDRIS P, NOGARE D D,
et al. Instant super-resolution imaging in live cells and embryos via analog image processing[J].
Nature Methods, 2013, 10(11): 1122-1126.
doi:
10.1038/nmeth.2687
|
[41] |
MO Y Q, FENG F, MAO H,
et al. Structured illumination microscopy artefacts caused by illumination scattering[J].
Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences, 2021, 379(2199): 20200153.
doi:
10.1098/rsta.2020.0153
|
[42] |
INGARAMO M, YORK A G, WAWRZUSIN P,
et al. Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue[J].
Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(14): 5254-5259.
doi:
10.1073/pnas.1314447111
|
[43] |
WINTER P W, YORK A G, NOGARE D D,
et al. Two-photon instant structured illumination microscopy improves the depth penetration of super-resolution imaging in thick scattering samples[J].
Optica, 2014, 1(3): 181-191.
doi:
10.1364/OPTICA.1.000181
|
[44] |
GREGOR I, SPIECKER M, PETROVSKY R,
et al. Rapid nonlinear image scanning microscopy[J].
Nature Methods, 2017, 14(11): 1087-1089.
doi:
10.1038/nmeth.4467
|
[45] |
HEINTZMANN R, JOVIN T M, CREMER C. Saturated patterned excitation microscopy-a concept for optical resolution improvement[J].
Journal of the Optical Society of America A, 2002, 19(8): 1599-1609.
doi:
10.1364/JOSAA.19.001599
|
[46] |
GUSTAFSSON M G L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J].
Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37): 13081-13086.
doi:
10.1073/pnas.0406877102
|
[47] |
ZHANG H, ZHAO M, PENG L L. Nonlinear structured illumination microscopy by surface plasmon enhanced stimulated emission depletion[J].
Optics Express, 2011, 19(24): 24783-24794.
doi:
10.1364/OE.19.024783
|
[48] |
DAKE F, NAKAYAMA S, TAKI Y. Optical resolution enhancement and background reduction by stimulated emission depletion structured illumination microscopy with structured excitation[C].
Novel Techniques in Microscopy 2015, OSA, 2015: NM2C. 4.
|
[49] |
XUE Y, SO P T C. Three-dimensional super-resolution high-throughput imaging by structured illumination STED microscopy[J].
Optics Express, 2018, 26(16): 20920-20928.
doi:
10.1364/OE.26.020920
|
[50] |
REGO E H, SHAO L, MACKLIN J J,
et al. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution[J].
Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(3): E135-E143.
|