Material | Refractive index | Absorption Index [mm−1] |
Cu | 1.15 | 65889 |
Al | 0.7278 | 152263 |
Ag | 0.886 | 113067 |
Ti | 1.71 | 62667 |
Perfect absorption | - | 1 |
Perfect reflection | 1 | - |
引用本文: | 魏伟, 陈志忠, 郭浩中, 贾传宇, 方方, 邹军, 房倩, 吴优, 孙铭浩, 李倩, 匡宇涵, 殷琦凯, 张国义. 365彩票官网彩票[J]. 365赌球. doi: 10.37188/CO.EN-2023-0017 |
Citation: |
|
本研究分析了目前用于显示器的高均匀宽角度灯珠的光学要求。采用新型非朗伯(non-Lambertian)分布封装Micro-LED芯片,实现了宽光束、高均匀性的微型LED芯片光珠。本文分析了在不同封装倾角、封装高度、封装材料、封装支架材料、蓝宝石厚度和图案化蓝宝石衬底尺寸下,使用由不同封装材料(铜、钛、铝和银)和材料类型(完全反射和完全吸收)组成的支架,模拟了固定灯珠的光输出效率和出光角度的变化。通过调整材料、芯片和封装参数,本文看可以得到一个、两个或三个光束,具有贴片灯珠的宽角度、高均匀性的远场光分布特性,可以满足当前LED和LCD的显示要求。
This study analyses the optical requirements of wide beam and high uniformity light beads, which are currently used in displays. Packaging micro light-emitting diode (LED) chips with a novel non-Lambertian distribution has facilitated the production of micro-LED chip light beads that are wide in beam and high in uniformity. The light output efficiency and beam angle of fixed beads were simulated using brackets made of copper, titanium, aluminium and silver, as well as materials that were completely reflecting and absorbing. The simulations were conducted at various fixture angles, packaging heights, sapphire thicknesses, and patterned sapphire substrate sizes. By adjusting the chip and packaging parameters, we can obtain one, two, or three light beams with SMD lamp beads characteristics that provide wide angles, high uniformity, and far-field light distribution. These characteristics can meet the current display requirements for LED and LCD.
Figure 4. Schematic diagram of far-field light distributions of 5050 surface-mount technology (SMT) beads with Al brackets and PMMA packaging material at different inclination angles.
Figure 5. Far-field light distributions of 5050 SMT beads with different packaging heights, Al brackets, and PMMA packaging materials at an inclination of 85°.
Figure 6. Far-field light distributions of 5050 SMT beads with different support materials, a packaging height of 0.08 mm, and Al support at an inclination of 85°.
Figure 7. Far-field light distributions of 5050 SMT beads with different material supports and silicone, a packaging height of 0.08 mm, and a sapphire thickness of 0.05 mm at an inclination angle of 85°.
Figure 8. Far-field light distributions of 5050 SMT beads with different chip sizes and Al brackets, and PMMA packaging materials at an inclination angle of 85°.
Figure 9. Far-field light distributions of 5050 SMT beads with a sapphire thickness of 30 μm Al brackets, and PMMA packaging materials at an inclination angle of 85°.
Figure 10. Far-field light distributions of 5050 SMT beads with different sapphire thicknesses, Al brackets and PMMA packaging materials at an inclination of 85°.
Table 1. Simulated optical parameters of different bracket materials
Material | Refractive index | Absorption Index [mm−1] |
Cu | 1.15 | 65889 |
Al | 0.7278 | 152263 |
Ag | 0.886 | 113067 |
Ti | 1.71 | 62667 |
Perfect absorption | - | 1 |
Perfect reflection | 1 | - |
Table 2. Simulated optical parameters of different packaging materials
Material | Refractive index | Absorption index [mm−1] |
Epoxy | 2.605 | 0.0078 |
PMMA | 1.499 | 0 |
Silica | 1.41 | 0.01 |
Table 3. Simulated optical parameters of light-emitting diodes with different sizes
Material | Thickness | Refractive
index |
Absorption index
[mm−1] |
Sapphire | 30 µm | 1.70 | 0.004 |
ITO | 300 nm | 1.50 | 0 |
p-GaN | 150 nm | 2.45 | 2.300 |
Active layer (MQW) | 100 nm | 2.54 | 25 |
n-GaN | 6.75 µm | 2.45 | 2.3 |
Table 4. Simulated optical parameters of light-emitting diodes with different sizes
Width of
square [mm] |
Light-beam
angle |
Light extraction efficiency |
Number of
light beams |
5 | 70 * 2 | 0.288 | 2 |
15 | 50 * 2 | 0.400 | 2 |
25 | 70 * 2 | 0.489 | 2 |
35 | 70 * 2 | 0.505 | 2 |
45 | 160 | 0.508 | 1 |
55 | 140 | 0.652 | 1 |
65 | 120 | 0.654 | 1 |
75 | 50 * 2 | 0.645 | 2 |
85 | 30 * 2 | 0.454 | 2 |
Table 5. Far-field beam angle and output efficiency of 5050 SMT beads with Al bracket and PMMA packaging materials at different angles Table 5 . Far-field beam angles and output efficiencies of 5050 SMT beads with different packaging heights and Al brackets and PMMA packaging material at an inclination of 85°
Width of
square [mm] |
Light beam angle
without reflection |
Light extraction efficiency | Number of light beams |
0.01 | 160 | 0.369 | 1 |
0.02 | 140 | 0.477 | 1 |
0.04 | 140 | 0.570 | 1 |
0.06 | 120 | 0.612 | 1 |
0.08 | 120 | 0.638 | 1 |
Table 6. Far-field beam angles and output efficiencies of 5050 SMT beads with different packaging materials, and a packaging height of 0.08 mmm, Al brackets at an inclination of 85°.
Material | Light beam angle without reflection | Light extraction efficiency | Number of light beams |
Cu | 140 | 0.247 | 1 |
Al | 20 * 2 | 0.574 | 2 |
Ag | 20 * 2 | 0.615 | 2 |
Ti | 160 | 0.194 | 1 |
Perfect absorption | 120 | 0.175 | 1 |
Perfect reflection | 30 * 2 | 0.813 | 2 |
Table 7. Far-field beam angles and output efficiencies of 5050 SMT beads with different materials, a packaging height of 0.08 mm, and a sapphire thickness of 0.05 mm packaged with silicone supports at an inclination of 85°.
Width of square [mm] | Light beam angle without reflection | Light extraction efficiency | Number of light beams |
Epoxy | 30 * 2 | 0.511 | 2 |
PMMA | 30 * 2 | 0.555 | 2 |
Silica | 20 * 2 | 0.574 | 2 |
Table 8. Beam angles and output efficiencies of 5050 SMT beads with different chip sizes and Al brackets and PMMA packaging materials at an inclination of 85°
Cell size | Light beam angle without reflection | Light extraction efficiency | Number of light beams |
30 | 0.521 | 30*2 | 2 |
40 | 0.505 | 30*2 | 2 |
50 | 0.490 | 30*2 | 2 |
100 | 0.456 | 30*2 | 2 |
Table 9. Beam angles and output efficiencies of 5050 SMT beads with a sapphire thickness of 30 μm, Al brackets, and PMMA packaging materials at an inclination angle of 85°
Diameter of sapphire square structure | Angle of light beam without reflection | Light extraction efficiency | Number of light beams |
2 | 0.555 | 30 * 2 | 2 |
3 | 0.554 | 30 * 2 | 2 |
4 | 0.553 | 30 * 2 | 2 |
Table 10. Beam angles and output efficiencies of 5050 SMT beads with different sapphire thicknesses and Al brackets and PMMA packaging materials at an inclination angle of 85°
Sapphire length | Light beam angle without reflection | Light extraction efficiency | Number of light beams |
10 | 0.547 | 30*2 | 2 |
30 | 0.553 | 30*2 | 2 |
50 | 0.553 | 30*2 | 2 |
[1] | ZOU G W, WANG Z Y, YANG W CH, et al. Image content adaptive color breakup suppression for field sequential color displays with mini-LED backlight enabled by deep learning. (查阅网上资料, 不确定文献类型, 请确认) .ZOU G W, WANG Z Y, YANG W CH, et al. . Image content adaptive color breakup suppression for field sequential color displays with mini-LED backlight enabled by deep learning. (查阅网上资料, 不确定文献类型, 请确认). |
[2] | GAO ZH W, NING H L, YAO R H, et al. Mini-LED backlight technology progress for liquid crystal display[J]. Crystals, 2022, 12(3): 313. doi: 10.3390/cryst12030313 |
[3] | YANG ZH Y, HSIANG E L, QIAN Y ZH, et al. Performance comparison between mini-LED backlit LCD and OLED display for 15.6-inch notebook computers[J]. Applied Sciences, 2022, 12(3): 1239. doi: 10.3390/app12031239 |
[4] | ZOU G W, WANG Z Y, LIU Y T, et al. Deep learning-enabled image content-adaptive field sequential color LCDs with mini-LED backlight[J]. Optics Express, 2022, 30(12): 21044-21064. doi: 10.1364/OE.459752 |
[5] | HSIANG E L, YANG ZH Y, YANG Q, et al. Prospects and challenges of mini‐LED, OLED, and micro‐LED displays[J]. Journal of the Society for Information Display, 2021, 29(6): 446-465. doi: 10.1002/jsid.1058 |
[6] | MILLER M E. LCD display technology[M]//MILLER M E. Color in Electronic Display Systems: Advantages of Multi-primary Displays. Cham: Springer, 2019: 87-105. |
[7] | ZOU G W, WANG Z Y, YANG W CH, et al. 65‐1: Deep learning‐enabled image content adaptive driving algorithm for field sequential color LCDs with mini‐LED backlight[J]. SID Symposium Digest of Technical Papers, 2022, 53(1): 857-860. doi: 10.1002/sdtp.15628 |
[8] | HUANG Y G, TAN G J, GOU F W et al. Prospects and challenges of mini‐LED and micro‐LED displays[J]. Journal of the Society for Information Display, 2019, 27(7): 387-401. doi: 10.1002/jsid.760 |
[9] | LEE J G, KO J H. Optimization of the optical structure of thin direct-lit LED backlights for LCD applications by using micro-LEDs[J]. Journal of Information Display, 2020, 21(1): 65-70. doi: 10.1080/15980316.2019.1693436 |
[10] | SHEN B, ASPELL J, RINEHART T, et al. P‐206: Late‐news‐poster: lattice patterned micro lens array (MLA) optical films for mini‐LED back light units (BLUs)[J]. SID Symposium Digest of Technical Papers, 2020, 51(1): 1649-1651. doi: 10.1002/sdtp.14211 |
[11] | HSIANG E L, LI Y N Q, HE Z Q, et al. Enhancing the efficiency of color conversion micro-LED display with a patterned cholesteric liquid crystal polymer film[J]. Nanomaterials, 2020, 10(12): 2430. doi: 10.3390/nano10122430 |
[12] | YU X J, XIANG L Y, ZHOU SH L, et al. Effect of refractive index of packaging materials on the light extraction efficiency of COB-LEDs with millilens array[J]. Applied Optics, 2021, 60(2): 306-311. doi: 10.1364/AO.410141 |
[13] | HUANG C G, HU M, ZHANG CH Y, et al. Narrow beam uniform illumination design of COB light source[J]. High Power Laser and Particle Beams, 2021, 33(2): 029002. (in Chinese). |
[14] | HAO R, GE A, TAO X, et al. Optical design of a high-mast luminaire based on four COB LED light source modules[J]. Lighting Research & Technology, 2019, 51(3): 447-456. |
[15] |
|
[16] | QIU Y, CHEN H H, MENG W X. Channel modeling for visible light communications—a survey[J]. Wireless Communications and Mobile Computing, 2016, 16(14): 2016-2034. doi: 10.1002/wcm.2665 |
[17] | WANG K, CHEN F, LIU Z Y, et al. Design of compact freeform lens for application specific light-emitting diode packaging[J]. Optics Express, 2010, 18(2): 413-425. doi: 10.1364/OE.18.000413 |
[18] | KEMPER B, STÜRWALD S, REMMERSMANN C, et al. Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces[J]. Optics and Lasers in Engineering, 2008, 46(7): 499-507. doi: 10.1016/j.optlaseng.2008.03.007 |
[19] | GFELLER F R, BAPST U. Wireless in-house data communication via diffuse infrared radiation[J]. Proceedings of the IEEE, 1979, 67(11): 1474-1486. doi: 10.1109/PROC.1979.11508 |
[20] | GALEOTTI F, MRÓZ W, SCAVIA G, et al. Microlens arrays for light extraction enhancement in organic light-emitting diodes: A facile approach[J]. Organic Electronics, 2013, 14(1): 212-218. doi: 10.1016/j.orgel.2012.10.034 |
[21] | CARRASCOSA M, CUSSO F, AGULLO-LOPEZ F. Lambert emitters: a simple Monte-Carlo approach to optical diffusers[J]. European Journal of Physics, 1985, 6(3): 183-187. doi: 10.1088/0143-0807/6/3/011 |
[22] | WEI W, CHEN Y Y, WANG C X, et al. Simulation of far-field light distribution of micro-LED based on its structural parameters[J]. Materials, 2022, 15(24): 8854. doi: 10.3390/ma15248854 |
[23] | HSIANG E L, LI Y N Q, HE Z Q, et al. Enhancing the efficiency of color conversion micro-LED display with a patterned cholesteric liquid crystal polymer film[J]. Nanomaterials, 2020, 10(12): 2430. doi: 10.3390/nano10122430. |
[24] | FAN Z Y, LIN J Y, JIANG H X. III-nitride micro-emitter arrays: development and applications[J]. Journal of Physics D:Applied Physics, 2008, 41(9): 094001. doi: 10.1088/0022-3727/41/9/094001 |
[25] | PARK H J, CHA Y J, KWAK J S. Chip size-dependent light extraction efficiency for blue micro-LEDs[J]. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2019, 32(1): 47-52. |
[26] |
|
[27] | GUO W, MENG H, CHEN Y R, et al. Wafer-level monolithic integration of vertical micro-LEDs on glass[J]. IEEE Photonics Technology Letters, 2020, 32(12): 673-676. doi: 10.1109/LPT.2020.2991672 |
[28] |
|
[29] | LELIKOV Y S, BOCHKAREVA N I, GORBUNOV R I, et al. Measurement of the absorption coefficient for light laterally propagating in light-emitting diode structures with In0.2Ga0.8N/GaN quantum wells[J]. Semiconductors, 2008, 42(11): 1342-1345. doi: 10.1134/S1063782608110195 |
[30] | DU Y J, CHANG B K, FU X Q, et al. Electronic structure and optical properties of zinc-blende GaN[J]. Optik, 2012, 123(24): 2208-2212. doi: 10.1016/j.ijleo.2011.10.017 |
[31] | ZHAO G Y, ISHIKAWA H, JIANG H, et al. Optical absorption and photoluminescence studies of n-type GaN[J]. Japanese Journal of Applied Physics, 1999, 38(9A): L993-L995. doi: 10.1143/JJAP.38.L993 |
[32] | YANG D, THOMAS M E, TROPF W J. Infrared refractive index of sapphire as a function of temperature[J]. Proceedings of SPIE, 1999, 3705: 60-69. doi: 10.1117/12.354642 |
[33] | O’MAHONY D, HOSSAIN M N, JUSTICE J, et al. High index contrast optical platform using gallium phosphide on sapphire: an alternative to SOI?[J]. Proceedings of SPIE, 2012, 8431: 84311H. doi: 10.1117/12.922687 |
[34] | TRAN N T, and SHI F G. 2007 LED package design for high optical efficiency and low viewing angle[C]. Proceedings of 2007 International Microsystems, Packaging, Assembly and Circuits Technology, , IEEE, 2007: 10-13. |