留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
李茂月, 许圣博, 孟令强, 刘志诚. 365赌球注册网站[J]. 365赌球. doi: 10.37188/CO.2023-0166
引用本文: 李茂月, 许圣博, 孟令强, 刘志诚. 365赌球注册网站[J]. 365赌球. doi: 10.37188/CO.2023-0166
LI Mao-yue, XU Sheng-bo, MENG Ling-qiang, LIU Zhi-cheng. 365赌球注册网站[J]. Chinese Optics. doi: 10.37188/CO.2023-0166
Citation: LI Mao-yue, XU Sheng-bo, MENG Ling-qiang, LIU Zhi-cheng. 365赌球注册网站[J]. Chinese Optics. doi: 10.37188/CO.2023-0166

365赌球注册网站

doi: 10.37188/CO.2023-0166
基金项目:国家自然科学基金(No. 51975169),黑龙江省自然科学基金(No. LH2022E085)资助项目
详细信息
  • 中图分类号:TP394.1

365赌球注册网站

Funds:Supported by National Natural Science Foundation of China (No. 51975169), Natural Science Foundation of Heilongjiang Province (No. LH2022E085)
More Information
  • 摘要:

    点云配准是获取三维点云模型空间姿态的关键步骤,为了进一步提高点云配准的效率和准确性,提出了一种基于逐点前进法特征点提取的改进型点云配准方法。首先,利用逐点前进法快速提取点云特征点,在保留点云模型特征的同时大幅精简点云数量。然后,通过使用法向量约束改进的KN-4PCS算法进行粗配准,以实现源点云与目标点云的初步配准。最后,使用双向Kd-tree优化的LM-ICP算法完成精配准。实验结果表明,本文方法具有较高的精度和效率,同时具有较好的鲁棒性,在斯坦福大学开放点云数据配准实验中,其平均误差较SAC-IA+ICP算法减少了约70.2%,较NDT+ICP算法减少了约49.6%,配准耗时分别减少约86.2%和81.9%,同时在引入不同程度的高斯噪声后仍能保持较高的精度和较低的耗时。在真实室内物体点云配准实验中,其平均配准误差为0.0742 mm,算法耗时平均为0.572 s。通过斯坦福开放数据与真实室内场景物体点云数据对比分析表明,本方法能够有效地提高点云配准的效率、准确性和鲁棒性,为基于点云的室内目标识别与位姿估计奠定了良好的基础。

  • 图 1 共面四点集的仿射不变量

    Figure 1. Affine invariant ratio for congruent 4-points

    图 2 仿射不变四点集提取示意图

    Figure 2. Diagram of affine invariant congruent 4-points extraction

    图 3 双向Kd-tree 点对搜索示意图

    Figure 3. Diagram of bidirectional Kd-tree point pair search

    图 4 点云配准方法总流程图

    Figure 4. Flowchart of the point cloud registration algorithm

    图 5 点云数据采集系统

    Figure 5. Point cloud data acquisition system

    图 6 斯坦福点云配准结果

    Figure 6. Registration results of Stanford point cloud data

    图 7 高斯噪声σ=0.003时斯坦福点云的配准结果

    Figure 7. Registration results of Stanford point cloud data at gaussian noise of σ= 0.003

    图 8 不同高斯噪声时各算法的配准误差

    Figure 8. Registration error of each algorithm with different gaussian noise

    图 9 不同高斯噪声时各算法的配准耗时

    Figure 9. The registration time consumed by each algorithm under different gaussian noise

    图 10 真实室内场景物体点云配准结果

    Figure 10. Object point cloud data registration results in indoor scene

    表  1 深度相机参数

    Table  1. Deep camera parameters

    参数名称 数值
    工作范围 0.6-8 w
    深度 精度 lm: ±3 mm
    视场角(FOV) H58.4 × V45.5°
    分辨率@帧率 640 × 480@30 fps
    视场角(FOV) H66.1° × 740.2°
    RGB 分辨率@帧率 640 × 480@30 fps
    UVC 支持
    下载: 导出CSV

    表  2 斯坦福点云配准定量分析结果

    Table  2. Quantitative analysis results of Stanford point cloud data registration

    Model SAC-IA+ICP NDT+ICP Ours
    RMSE/mm Time/s RMSE/mm Time/s RMSE/mm Time/s
    Armadillo 0.0288 3.21 0.0168 2.19 0.00730 0.437
    Dragon 0.0363 3.77 0.0218 3.25 0.0125 0.528
    下载: 导出CSV

    表  3 真实室内场景物体点云配准定量分析结果

    Table  3. Quantitative analysis results of object point cloud data registration in indoor scene

    模型 源点云数/个 源点云特征点数/个 目标点云数/个 目标点云特征点数/个 RMSE/mm 平均误差/mm 耗时/s 平均耗时/s
    Chair 8549 3702 10431 4847 0.0686 0.544
    Kettle 3713 1359 3879 1449 0.0633 0.0742 0.487 0.572
    Mannequin 45292 16098 46507 16462 0.0907 0.686
    下载: 导出CSV
  • [1] 杨鹏程, 杨朝, 孟杰, 等. 基于法向量和面状指数特征的文物点云棱界配准方法[J]. 中国光学(中英文),2023,16(3):654-662. doi: 10.37188/CO.2022-0156

    YANG P CH, YANG ZH, MENG J, et al. Aligning method for point cloud prism boundaries of cultural relics based on normal vector and faceted index features[J]. Chinese Optics, 2023, 16(3): 654-662. (in Chinese). doi: 10.37188/CO.2022-0156
    [2] ZOU ZH, LANG H, LOU Y X, et al. Plane-based global registration for pavement 3D reconstruction using hybrid solid-state LiDAR point cloud[J]. Automation in Construction, 2023, 152: 104907. doi: 10.1016/j.autcon.2023.104907
    [3] CAO T, LIU Y P, DAI J J, et al. Local scanned point-cloud registration of aeroengine pipeline system based on axial constraints[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 2527011. doi: 10.1109/TIM.2023.3256460
    [4] DENG Y H, CHEN G H, LIU X L, et al. 3D pose recognition of small special-shaped sheet metal with multi-objective overlapping[J]. Electronics, 2023, 12(12): 2613. doi: 10.3390/electronics12122613
    [5] SHI X Y, PENG J J, LI J P, et al. The iterative closest point registration algorithm based on the normal distribution transformation[J]. Procedia Computer Science, 2019, 147: 181-190. doi: 10.1016/j.procs.2019.01.219
    [6] AIGER D, MITRA N J, COHEN-OR D. 4-points congruent sets for robust pairwise surface registration[J]. ACM Transactions on Graphics, 2008, 27(3): 1-10.
    [7] 傅瑶, 陈鹏, 郭贵松, 等. 基于4PCS和SICP的点云配准方法在钢轨磨耗计算中的应用[J]. 电子测量与仪器学报,2022,36(12):210-218. doi: 10.13382/j.jemi.B2105036

    FU Y, CHEN P, GUO G S, et al. Application of the point cloud registration method based on 4PCS and SICP in rail wear calculation[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(12): 210-218. (in Chinese). doi: 10.13382/j.jemi.B2105036
    [8] THEILER P W, WEGNER J D, SCHINDLER K. Keypoint-based 4-points congruent sets–automated marker-less registration of laser scans[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 96: 149-163. doi: 10.1016/j.isprsjprs.2014.06.015
    [9] TAO W Y, LIU J B, XU D, et al. Automatic registration of point clouds by combining local shape descriptor and G4PCS algorithm[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 6339-6351. doi: 10.1109/JSTARS.2023.3293409
    [10] BESL P J, MCKAY N D. Method for registration of 3-D shapes[J]. Proceedings of SPIE, 1992, 1611: 586-606. doi: 10.1117/12.57955
    [11] 林森, 张强. 应用邻域点信息描述与匹配的点云配准[J]. 光学 精密工程,2022,30(8):984-997. doi: 10.37188/OPE.20223008.0984

    LIN S, ZHANG Q. Point cloud registration using neighborhood point information description and matching[J]. Optics and Precision Engineering, 2022, 30(8): 984-997. (in Chinese). doi: 10.37188/OPE.20223008.0984
    [12] YAO Z W, ZHAO Q X, LI X F, et al. Point cloud registration algorithm based on curvature feature similarity[J]. Measurement, 2021, 177: 109274. doi: 10.1016/j.measurement.2021.109274
    [13] LV CH L, LIN W S, ZHAO B Q. KSS-ICP: point cloud registration based on Kendall shape space[J]. IEEE Transactions on Image Processing, 2023, 32: 1681-1693. doi: 10.1109/TIP.2023.3251021
    [14] LIU Y SH, CHEN X D, WANG K F, et al. A Chebyshev metamodel based BnB approach to efficiently search global optimum for 3D ICP point set registration[J]. Computer Aided Geometric Design, 2023, 101: 102178. doi: 10.1016/j.cagd.2023.102178
    [15] XIE L F, ZHU Y Y, YIN M, et al. Self-feature-based point cloud registration method with a novel convolutional Siamese point net for optical measurement of blade profile[J]. Mechanical Systems and Signal Processing, 2022, 178: 109243. doi: 10.1016/j.ymssp.2022.109243
    [16] ZHANG ZH Y, SUN J D, DAI Y CH, et al. Self-supervised rigid transformation equivariance for accurate 3D point cloud registration[J]. Pattern Recognition, 2022, 130: 108784. doi: 10.1016/j.patcog.2022.108784
    [17] 何宽, 孙瑞, 官云兰, 等. 基于逐点前进法的点云数据精简[J]. 测绘通报,2022(9):167-169.

    HE K, SUN R, GUAN Y L, et al. Point cloud data simplification based on point-by-point advancing method[J]. Bulletin of Surveying and Mapping, 2022(9): 167-169. (in Chinese).
    [18] 李茂月, 赵伟翔, 马康盛, 等. 结构光检测点云精简与重构参数自动调节方法[J]. 仪器仪表学报,2022,43(8):122-130.

    LI M Y, ZHAO W X, MA K SH, et al. Point cloud simplification and reconstruction parameters’ automatic adjustment method of structured light detection[J]. Chinese Journal of Scientific Instrument, 2022, 43(8): 122-130. (in Chinese).
    [19] FITZGIBBON A W. Robust registration of 2D and 3D point sets[J]. Image and Vision Computing, 2003, 21(13-14): 1145-1153. doi: 10.1016/j.imavis.2003.09.004
    [20] 王宾, 刘林, 侯榆青, 等. 应用改进迭代最近点方法的三维心脏点云配准[J]. 光学 精密工程,2020,28(2):474-484.

    WANG B, LIU L, HOU Y Q, et al. Three-dimensional cardiac point cloud registration by improved iterative closest point method[J]. Optics and Precision Engineering, 2020, 28(2): 474-484. (in Chinese).
  • 加载中
图(10) /表(3)
计量
  • 文章访问数: 19
  • HTML全文浏览量: 9
  • PDF下载量: 1
  • 被引次数: 0
365赌球app下载中心
  • 网络出版日期: 2023-11-07

目录

    /

    返回文章
    返回