引用本文: | 杜莹, 陈梅蕊, 刘禹彤, 曹宗新, 毛红敏, 李小平, 孙会娟, 曹召良. 365赌球[J]. 365赌球. doi: 10.37188/CO.2023-0137 |
Citation: | DU Ying, CHEN MeiRui, LIU YuTong, CAO ZongXin, MAO HongMin, LI XiaoPing, SUN HuiJuan, CAO ZhaoLiang. 365赌球app下载中心[J]. Chinese Optics. doi: 10.37188/CO.2023-0137 |
液晶波前校正器通常基于液晶显示器的工艺制备而成,因此其研制成本高、定制难度大。本文基于掩模光刻法制备液晶波前校正器,以实现液晶波前校正器的专用化、低成本研制。首先,基于掩模光刻技术设计并制备了91像素的无源液晶驱动电极,并封装成液晶光学校正单元。然后,设计并制备了驱动连接电路板,实现液晶光学驱动单元和驱动电路板的匹配对接。接着,进行液晶波前校正器响应特性检测,结果显示,其相位调制量为5.5个波长,响应时间为224 ms。最后,利用Zygo干涉仪进行球面波的产生和静态倾斜像差的校正,结果显示,其可以产生正负离焦波前,且对水平倾斜像差校正后,Zernike多项式中第一项的值从1.18降至0.16,校正幅度达86%,实现了像差的有效校正。本文的研究工作可为液晶波前校正器的研制提供新思路,进而拓宽其应用领域和场景。
Liquid crystal wavefront correctors (LCWFCs) have the high development cost and customization difficulty as they are usually fabricated based on the process technology of liquid crystal displays. In the paper, to achieve specialized and low-cost development of LCWFCs, it is fabricated with the mask lithography method. Firstly, a 91 pixels passive liquid crystal driving electrode was designed and prepared based on mask lithography technology and then, packaged as a liquid crystal optical correction unit. Then, a driver connection circuit board was designed and prepared to connect the optical correction unit and the driving circuit board. Next, the response characteristics of the LCWFC were tested, and the results show that the phase modulation is 5.5λ, and the response time is 224 ms. Finally, the spherical waves are generated and the static tilt aberrations are corrected based on Zygo interferometer. The results show that the LCWFC can generate positive and negative defocused wavefronts. Further, after correction of the horizontal tilt aberration, the coefficient of the first term of the Zernike polynomials is decreased from 1.18 to 0.16. Therefore, the aberration is corrected with the amplitude of 86%. This work may provide new ideas for the development of LCWFCs, and then expanding their application fields and scenarios.
图 2 (a)驱动电极结构;(b)液晶盒封装结构;(c)电极间走线
Figure 2. (a) Structure of driving electrode; (b) Packaging structure of liquid crystal cell; (c) Wiring between electrodes
图 4 (a)、(b)镀金驱动电极不同位置的显微镜照片;(c)封装的液晶盒
Figure 4. (a) and (b) Different location of gold-plated driving electrodes observed with the microscope; (c) Packaged liquid crystal cell
图 6 液晶波前校正器响应特性测试光路
Figure 6. Optical layout for testing the response characteristic of liquid crystal wavefront corrector
图 7 (a)单像素驱动响应结果 (b)驱动通道与像素对应位置关系
Figure 7. (a) Response result with single pixel driving; (b) Corresponding relationship between the driving channel and pixel position
图 8 (a)示波器测量的光强变化曲线 (b)时间与相位关系曲线
Figure 8. (a) Intensity curve measured with oscilloscope; (b) Phase as a function of response time
图 9 (a)灰度级与相位关系曲线(b)相位调制误差
Figure 9. (a) Phase as a function of gray level; (b) Phase modulation error
图 11 (a)干涉条纹;(b)原始波面;(c)相对测量波面
Figure 11. (a) Interference fringe, (b) Initial wave surface and (c) Relative measured wavefront
图 12 第一行:施加正离焦,(a)干涉条纹,(b)立体波面,(c)波前;第二行:施加负离焦,(d)干涉条纹,(e)立体波面,(f)波前
Figure 12. First line: negative defocus, (a) Interference fringe, (b) Stereoscopic wavefront and (c) Two-dimensional wavefront; Second line: positive defocus, (d) Interference fringe, (e) Stereoscopic wavefront and (f) Two-dimensional wavefront
图 13 校正前:(a)干涉条纹,(b)波前;校正后:(c)干涉条纹,(d)波前
Figure 13. Before correction: (a)Interference fringe and (b) Wavefront; After correction: (c) Interference fringe and (d) Wavefront
[1] | SHAH S, SUBRAMANIAN S, ANUPAMA G C, et al. Towards the development of the Infrared Guide Star Catalogue for the adaptive optics observations by the Thirty Meter Telescope[J]. Proceedings of SPIE, 2022, 12185: 1218506. |
[2] | WALSH S M, KARPATHAKIS S F E, MCCANN A S, et al. Demonstration of 100 Gbps coherent free-space optical communications at LEO tracking rates[J]. Scientific Reports, 2022, 12(1): 18345. doi: 10.1038/s41598-022-22027-0 |
[3] |
KWON Y, HONG J H, KANG S,
et al. Computational conjugate adaptive optics microscopy for longitudinal through-skull imaging of cortical myelin[J].
Nature Communications, 2023, 14(1): 105.
doi:
|
[4] | BURNS S A, ELSNER A E, SAPOZNIK K A, et al. Adaptive optics imaging of the human retina[J]. Progress in Retinal and Eye Research, 2019, 68: 1-30. doi: 10.1016/j.preteyeres.2018.08.002 |
[5] | YANG Y Q, KANG X W, CAO L C. Robust propagation of a steady optical beam through turbulence with extended depth of focus based on spatial light modulator[J]. Journal of Physics:Photonics, 2023, 5(3): 035002. doi: 10.1088/2515-7647/acd28c |
[6] | 马阎星, 吴坚, 粟荣涛, 等. 光学相控阵技术发展概述[J]. 红外与激光工程,2020,49(10):20201042.MA Y X, WU J, SU R T, et al. Review of optical phased array techniques[J]. Infrared and Laser Engineering, 2020, 49(10): 20201042. (in Chinese). |
[7] | DOU R SH, GILES M K. Closed-loop adaptive-optics system with a liquid-crystal television as a phase retarder[J]. Optics Letters, 1995, 20(14): 1583-1585. doi: 10.1364/OL.20.001583 |
[8] | 宣丽, 刘永军, 胡立发, 等. 一种纯位相透射式TFT液晶波前校正器的制备方法: 中国, 200410011218.3[P]. 2006-02-01. (查阅网上资料, 未找到对应的英文翻译, 请确认) . |
[9] | HU L F, XUAN L, LIU Y J, et al. Phase-only liquid-crystal spatial light modulator for wave-front correction with high precision[J]. Optics Express, 2004, 12(26): 6403-6409. doi: 10.1364/OPEX.12.006403 |
[10] | YIN SH, ZENG D H, CHEN Y T, et al. Optically controlled terahertz dynamic beam splitter with adjustable split ratio[J]. Nanomaterials, 2022, 12(7): 1169. doi: 10.3390/nano12071169 |
[11] | BURNS D C, UNDERWOOD I, GOURLAY J, et al. A 256×256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator[J]. Optics Communications, 1995, 119(5-6): 623-632. doi: 10.1016/0030-4018(95)00414-4 |
[12] | 罗娜, 杨文皓, 王琦. 液晶相控阵技术的研究进展[J]. 光学仪器,2023,45(2):75-82.LUO N, YANG W H, WANG Q. Research progress in liquid crystal phased array technology[J]. Optical Instruments, 2023, 45(2): 75-82. (in Chinese). |
[13] | SERATI S A, XIA X W, MUGHAL O, et al. High-resolution phase-only spatial light modulators with submillisecond response[J]. Proceedings of SPIE, 2003, 5106: 138-145. doi: 10.1117/12.488311 |
[14] |
陈颖, 黄润坤, 吴頔, 等. 全球光刻胶产业现状及布局[J]. 中国集成电路,2023,32(5):22-26,65.
|
[15] | CAO ZH L, PENG Z H, XUAN L, et al. Design and fabrication of 2 kHz nematic liquid crystal variable retarder with reflection mode[J]. Liquid Crystals, 2020, 47(6): 870-881. doi: 10.1080/02678292.2019.1686778 |
[16] | 杨雅淇. 双波前校正器校正畸变波前的实验研究[D]. 西安: 西安理工大学, 2022.YANG Y Q. Experimental research on correction of distorted wavefront by dual wavefront corrector[D]. Xi’an: Xi’an University of Technology, 2022. (in Chinese). |
[17] | LOVE G D. Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator[J]. Applied Optics, 1997, 36(7): 1517-1524. doi: 10.1364/AO.36.001517 |
[18] | 陈梅蕊, 杜莹, 毛红敏, 等. 无源液晶光学器件的低成本驱动电路设计[J]. 液晶与显示,2022,37(12):1572-1579. doi: 10.37188/CJLCD.2022-0266 CEHN M R, DU Y, MAO H M, et al. Design of low-cost drive circuit for passive liquid crystal optical device[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(12): 1572-1579. (in Chinese). doi: 10.37188/CJLCD.2022-0266 |
[19] | 李艳丽, 刘显和, 伍强. 先进光刻技术的发展历程与最新进展[J]. 激光与光电子学进展,2022,59(9):0922006.LI Y L, LIU X H, WU Q. Evolution and updates of advanced photolithography technology[J]. Laser & Optoelectronics Progress, 2022, 59(9): 0922006. (in Chinese). |
[20] | CHAKER A, ALTY H R, TIAN P, et al. Nanoscale patterning of zinc oxide from zinc acetate using electron beam lithography for the preparation of hard lithographic masks[J]. ACS Applied Nano Materials, 2021, 4(1): 406-413. doi: 10.1021/acsanm.0c02756 |
[21] |
芦永军, 曹召良, 曲艳玲, 等. 液晶波前校正器动态位相响应特性研究[J]. 液晶与显示,2012,27(6):730-735.
doi:
10.3788/YJYXS20122706.0730
|
[22] | PENG Z H, WANG Q D, LIU Y G, et al. Electrooptical properties of new type fluorinated phenyl-tolane isothiocyanate liquid crystal compounds[J]. Liquid Crystals, 2016, 43(2): 276-284. doi: 10.1080/02678292.2015.1105311 |
[23] | GU D F, WINKER B K, TABER D B, et al. Dual frequency liquid crystal devices for infrared electro-optical applications[J]. Proceedings of SPIE, 4799, 2002,4799: 37-47. |
[24] | 曹召良, 穆全全, 胡立发, 等. 液晶波前校正器位相调制非线性及闭环校正研究[J]. 液晶与显示,2008,23(2):157-162.CAO Z L, MU Q Q, HU L F, et al. Nonlinear phase modulation of liquid crystal wavefront corrector and closed loop correction[J]. Chinese Journal of Liquid Crystals and Displays, 2008, 23(2): 157-162. (in Chinese). |
[25] | LIU C, MU Q Q, HU L F, et al. High precision Zernike modal gray map reconstruction for liquid crystal corrector[J]. Chinese Physics B, 2010, 19(6): 064214. doi: 10.1088/1674-1056/19/6/064214 |
[26] | 范君柳, 吴泉英, 陈宝华, 等. 基于双泽尼克多项式的多视场稀疏孔径成像[J]. 光学学报, 2023, 43(10): 1011001.FAN J L, WU Q Y, CHEN B H, et al. Multi-field-of-view sparse aperture imaging based on double Zernike polynomials[J]. Acta Optica Sinica, 2023, 43(10): 87-96. (in Chinese). |
[27] | 王英. 相干光通信系统的非共光路像差校准实验研究[D]. 西安: 西安理工大学, 2021.WANG Y. Experimental study on non common path aberration calibration of coherent optical communication system[D]. Xi’an: Xi’an University of Technology, 2021. (in Chinese). |
[28] | 张天宇, 王钢, 张熙, 等. 基于焦面复制方法的自适应光学系统静态像差校正技术[J]. 中国光学,2022,15(3):545-551. doi: 10.37188/CO.2021-0182 ZHANG T Y, WANG G, ZHANG X, et al. Staticaberration correction technique for adaptive optics system based on focal-plane copy approach[J]. Chinese Optics, 2022, 15(3): 545-551. (in Chinese). doi: 10.37188/CO.2021-0182 |