[1] |
ROYLANCE B J. Ferrography—then and now[J].
Tribology International, 2005, 38(10): 857-862.
doi:
10.1016/j.triboint.2005.03.006
|
[2] |
WANG J Q, WANG X L. The segmentation of ferrography images: a brief survey[J].
Materials Science Forum, 2013, 770: 427-432.
doi:
10.4028/www.scientific.net/MSF.770.427
|
[3] |
卿华, 王新军. 飞机油液监控技术[M]. 北京: 航空工业出版社, 2011.QING H, WANG X J. Aircraft oil Monitoring Technology[M]. Beijing: Aviation Industry Press, 2011. (in Chinese)
(查阅网上资料, 未找到对应的英文翻译, 请确认)
.
|
[4] |
叶一青, 易定容, 张勇贞, 等. 基于倾斜摄像头的显微自动对焦方法[J]. 光学学报,2019,39(12):1218001.
doi:
10.3788/AOS201939.1218001
YE Y Q, YI D R, ZHANG Y ZH,
et al. Microscopy autofocus method using tilt camera[J].
Acta Optica Sinica, 2019, 39(12): 1218001. (in Chinese).
doi:
10.3788/AOS201939.1218001
|
[5] |
BATHE-PETERS M, ANNIBALE P, LOHSE M J. All-optical microscope autofocus based on an electrically tunable lens and a totally internally reflected IR laser[J].
Optics Express, 2018, 26(3): 2359-2368.
doi:
10.1364/OE.26.002359
|
[6] |
ZHANG X, ZENG F, LI Y,
et al. Improvement in focusing accuracy of DNA sequencing microscope with multi-position laser differential confocal autofocus method[J].
Optics Express, 2018, 26(2): 895-904.
|
[7] |
唐凌宇, 葛明锋, 董文飞. 全自动推扫式高光谱显微成像系统设计与研究[J]. 中国光学,2021,14(6):1486-1494.
doi:
10.37188/CO.2021-0040
TANG L Y, GE M F, DONG W F. Design and research of fully automatic push-broom hyperspectral microscopic imaging system[J].
Chinese Optics, 2021, 14(6): 1486-1494. (in Chinese).
doi:
10.37188/CO.2021-0040
|
[8] |
JANG J, YOO Y, KIM J,
et al. Sensor-based auto-focusing system using multi-scale feature extraction and phase correlation matching[J].
Sensors, 2015, 15(3): 5747-5762.
doi:
10.3390/s150305747
|
[9] |
GUO K K, LIAO J, BIAN Z CH,
et al. InstantScope: a low-cost whole slide imaging system with instant focal plane detection[J].
Biomedical Optics Express, 2015, 6(9): 3210-3216.
doi:
10.1364/BOE.6.003210
|
[10] |
GAN Y H, YE Z T, HAN Y B,
et al. Single-shot autofocusing in light sheet fluorescence microscopy with multiplexed structured illumination and deep learning[J].
Optics and Lasers in Engineering, 2023, 168: 107663.
doi:
10.1016/j.optlaseng.2023.107663
|
[11] |
HOU S B, ZHANG H Y, MA B L,
et al. Extended autofocusing in dual-wavelength digital holography[J].
Applied Optics, 2023, 62(22): 5959-5968.
doi:
10.1364/AO.494696
|
[12] |
郭立强, 刘恋. 结合斜变换与方差的图像聚焦测度[J]. 光学 精密工程,2021,29(7):1731-1739.
doi:
10.37188/OPE.2020.0555
GUO L Q, LIU L. Image focus measure based on slant transform and variance[J].
Optics and Precision Engineering, 2021, 29(7): 1731-1739. (in Chinese).
doi:
10.37188/OPE.2020.0555
|
[13] |
LIAO Y, XIONG Y H, YANG Y H. An auto-focus method of microscope for the surface structure of transparent materials under transmission illumination[J].
Sensors, 2021, 21(7): 2487.
doi:
10.3390/s21072487
|
[14] |
NOEK R, KNOERNSCHILD C, MIGACZ J,
et al. Multiscale optics for enhanced light collection from a point source[J].
Optics Letters, 2010, 35(14): 2460-2462.
doi:
10.1364/OL.35.002460
|
[15] |
SHAJKOFCI A, LIEBLING M. Semi-blind spatially-variant deconvolution in optical microscopy with local point spread function estimation by use of convolutional neural networks[C].
Proceedings of 25th IEEE International Conference on Image Processing, IEEE, 2018.
|
[16] |
FARNES S A R, TSAI D M, CHIU W Y. Autofocus measurement for electronic components using deep regression[J].
IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11(4): 697-707.
doi:
10.1109/TCPMT.2021.3060809
|
[17] |
GE Y H, LI B, ZHAO Y ZH,
et al. HH-Net: image driven microscope fast auto-focus with deep neural network[C].
Proceedings of the 9th International Conference on Biomedical Engineering and Technology, Association for Computing Machinery, 2019: 180-185.
|
[18] |
XIANG Y, HE ZH J, LIU Q,
et al. Autofocus of whole slide imaging based on convolution and recurrent neural networks[J].
Ultramicroscopy, 2021, 220: 113146.
doi:
10.1016/j.ultramic.2020.113146
|
[19] |
REDMON J, FARHADI A. YOLOv3: an incremental improvement[J/OL]. arXiv: 1804.02767, 2018.
(查阅网上资料, 请核对文献类型及格式)
.REDMON J, FARHADI A. YOLOv3: an incremental improvement[J/OL]. arXiv: 1804.02767, 2018.
(查阅网上资料, 请核对文献类型及格式).
|
[20] |
HE K M, ZHANG X Y, REN SH Q,
et al. Deep residual learning for image recognition[C].
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2016.
|