[1] |
YAO J J, WANG L V. Recent progress in photoacoustic molecular imaging[J].
Current Opinion in Chemical Biology, 2018, 45: 104-112.
doi:
10.1016/j.cbpa.2018.03.016
|
[2] |
孙正, 王新宇. 深度学习在光声成像中的应用现状[J]. 计算机科学,2020,47(6A):148-152,156.SUN ZH, WANG X Y. Application of deep learning in photoacoustic imaging[J].
Computer Science, 2020, 47(6A): 148-152,156. (in Chinese).
|
[3] |
COX B T, LAUFER J G, BEARD P C,
et al. Quantitative spectroscopic photoacoustic imaging: a review[J].
Journal of Biomedical Optics, 2012, 17(6): 061202.
doi:
10.1117/1.JBO.17.6.061202
|
[4] |
JAVAHERIAN A, HOLMAN S. Direct quantitative photoacoustic tomography for realistic acoustic media[J].
Inverse Problems, 2019, 35(8): 084004.
doi:
10.1088/1361-6420/ab091e
|
[5] |
XU M H, WANG L V. Universal back-projection algorithm for photoacoustic computed tomography[J].
Proceedings of SPIE, 2005, 5697: 251-254.
doi:
10.1117/12.589146
|
[6] |
SUN ZH, HAN D D, YUAN Y. 2-D image reconstruction of photoacoustic endoscopic imaging based on time-reversal[J].
Computers in Biology and Medicine, 2016, 76: 60-68.
doi:
10.1016/j.compbiomed.2016.06.028
|
[7] |
SHAN H M, WIEDEMAN C, WANG G,
et al. Simultaneous reconstruction of the initial pressure and sound speed in photoacoustic tomography using a deep-learning approach[J].
Proceedings of SPIE, 2019, 11105: 1110504.
|
[8] |
LOU Y, WANG K, ORAEVSKY A A,
et al. Impact of nonstationary optical illumination on image reconstruction in optoacoustic tomography[J].
Journal of the Optical Society of America A, 2016, 33(12): 2333-2347.
doi:
10.1364/JOSAA.33.002333
|
[9] |
孟琪, 孙正. 生物光声层析成像中不均匀和不稳定照明解决方法[J]. 中国光学,2021,14(2):307-319.
doi:
10.37188/CO.2020-0142
MENG Q, SUN ZH. Solutions to inhomogeneous and unstable illumination in biological photoacoustic tomography[J].
Chinese Optics, 2021, 14(2): 307-319. (in Chinese).
doi:
10.37188/CO.2020-0142
|
[10] |
CHO M H, KANG L H, KIM J S,
et al. An efficient sound speed estimation method to enhance image resolution in ultrasound imaging[J].
Ultrasonics, 2009, 49(8): 774-778.
doi:
10.1016/j.ultras.2009.06.005
|
[11] |
NAPOLITANO D, CHOU C H, MCLAUGHLIN G,
et al. Sound speed correction in ultrasound imaging[J].
Ultrasonics, 2006, 44 Suppl: e43-e46.
|
[12] |
PETROSYAN T, THEODOROU M, BAMBER J,
et al. Rapid scanning wide-field clutter elimination in epi-optoacoustic imaging using comb LOVIT[J].
Photoacoustics, 2018, 10: 20-30.
doi:
10.1016/j.pacs.2018.02.001
|
[13] |
LEDIJU BELL M A, KUO N, SONG D Y,
et al. Short-lag spatial coherence beamforming of photoacoustic images for enhanced visualization of prostate brachytherapy seeds[J].
Biomedical Optics Express, 2013, 4(10): 1964-1977.
doi:
10.1364/BOE.4.001964
|
[14] |
NGUYEN H N Y, HUSSAIN A, STEENBERGEN W. Reflection artifact identification in photoacoustic imaging using multi-wavelength excitation[J].
Biomedical Optics Express, 2018, 9(10): 4613-4630.
doi:
10.1364/BOE.9.004613
|
[15] |
孙正, 闫向阳. 采用稀疏测量数据的有限角度光声层析成像的研究进展[J]. 声学技术,2020,39(1):1-10.
doi:
10.16300/j.cnki.1000-3630.2020.01.001
SUN ZH, YAN X Y. Progress of limited-view photoacoustic tomography imaging based on sparse measurement[J].
Technical Acoustics, 2020, 39(1): 1-10. (in Chinese).
doi:
10.16300/j.cnki.1000-3630.2020.01.001
|
[16] |
LI C H, WANG L V. Photoacoustic tomography and sensing in biomedicine[J].
Physics in Medicine & Biology, 2009, 54(19): R59-R97.
|
[17] |
HOCHULI R, POWELL S, ARRIDGE S,
et al. Forward and adjoint radiance Monte Carlo models for quantitative photoacoustic imaging[J].
Proceedings of SPIE, 2015, 9323: 93231P.
|
[18] |
MOHAMMADI L, BEHNAM H, TAVAKKOLI J,
et al. Skull’s photoacoustic attenuation and dispersion modeling with deterministic ray-tracing: towards real-time aberration correction[J].
Sensors, 2019, 19(2): 345.
doi:
10.3390/s19020345
|
[19] |
WANG K, ERMILOV S A, SU R,
et al. An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography[J].
IEEE Transactions on Medical Imaging, 2011, 30(2): 203-214.
doi:
10.1109/TMI.2010.2072514
|
[20] |
LIU D C, NOCEDAL J. On the limited memory BFGS method for large scale optimization[J].
Mathematical Programming, 1989, 45(1-3): 503-528.
doi:
10.1007/BF01589116
|
[21] |
BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J].
SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202.
doi:
10.1137/080716542
|
[22] |
HIRAKAWA M, NAGAKUBO D, KANZLER B,
et al. Fundamental parameters of the developing thymic epithelium in the mouse[J].
Scientific Reports, 2018, 8(1): 11095.
doi:
10.1038/s41598-018-29460-0
|
[23] |
LU T, WANG Y H, LI J,
et al. Full-frequency correction of spatial impulse response in back-projection scheme using space-variant filtering for optoacoustic mesoscopy[J].
Photoacoustics, 2020, 19: 100193.
doi:
10.1016/j.pacs.2020.100193
|
[24] |
SHENG Q W, WANG K, MATTHEWS T P,
et al. A constrained variable projection reconstruction method for photoacoustic computed tomography without accurate knowledge of transducer responses[J].
IEEE Transactions on Medical Imaging, 2015, 34(12): 2443-2458.
doi:
10.1109/TMI.2015.2437356
|
[25] |
ZANGERL G, MOON S, HALTMEIER M,
et al. Photoacoustic tomography with direction dependent data: an exact series reconstruction approach[J].
Inverse Problems, 2019, 35(11): 114005.
doi:
10.1088/1361-6420/ab2a30
|
[26] |
LI M L, WANG L V. A study of reconstruction in photoacoustic tomography with a focused transducer[J].
Proceedings of SPIE, 2007, 6437: 64371E.
|
[27] |
GAVIN H P.
The Levenberg-Marquardt algorithm for nonlinear least squares curve-fitting problems[D]. Durham: Duke University, 2020: 1-19.
(查阅网上资料, 未能确认文献类型, 请确认)
.GAVIN H P.
The Levenberg-Marquardt algorithm for nonlinear least squares curve-fitting problems[D]. Durham: Duke University, 2020: 1-19.
(查阅网上资料, 未能确认文献类型, 请确认).
|
[28] |
王倩, 蔡伟伟, 陶波. 基于层析成像的激光强度分布测量方法[J]. 中国光学, 2023, 16(4): 743-752.WANG Q, CAI W W, TAO B. Laser intensity distribution measurement method based on tomographic imaging[J]
Chinese Optics, 2023, 16(4): 743-752. (in Chinese).
|
[29] |
HELOU E S, ZIBETTI M V W, HERMAN G T. Fast proximal gradient methods for nonsmooth convex optimization for tomographic image reconstruction[J].
Sensing and Imaging, 2020, 21(1): 45.
doi:
10.1007/s11220-020-00309-z
|
[30] |
BECK A, TEBOULLE M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems[J].
IEEE Transactions on Image Processing, 2009, 18(11): 2419-2434.
doi:
10.1109/TIP.2009.2028250
|
[31] |
BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J].
SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202. (查阅网上资料, 本条与第21条文献重复, 请确认).
doi:
10.1137/080716542
BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences,
2009,
2(1):
183-202. (查阅网上资料, 本条与第21条文献重复, 请确认).
doi:
10.1137/080716542
|