参 数 | 数 值 |
焦距/mm | 30 |
工作谱段1/nm | 480~900 |
工作谱段2/nm | 900~1700 |
工作谱段3/nm | 480~1700 |
F数 (480~900 nm) | 5.0 |
F数 (900~1700 nm) | 3.0 |
视场2ω/(°) | 16 |
畸变/% | ≤0.8 |
MTF(@100 lp/mm) | ≥0.20 |
引用本文: | 张坤, 李京宸, 孙思, 谌庆荣, 杨帆. 365赌球[J]. 365赌球. doi: 10.37188/CO.2023-0098 |
Citation: | ZHANG Kun, LI Jing-chen, SUN Si, CHEN Qing-rong, YANG Fan. 365彩票官网官方入口[J]. Chinese Optics. doi: 10.37188/CO.2023-0098 |
针对现有多波段成像系统体积大、功耗高和集成化设计困难的问题,本文提出了一种基于单传感器的三波段共口径成像光学系统的设计方法。首先,在光学系统的光阑处设计1×2多波段透镜阵列,把可见光波段和短波红外波段同时成像在一个像平面上,并把两个波段中心波长的成像位置偏差控制在一个像元内以实现双波段融合成像。然后,针对双波段成像衍射极限不同的问题,提出分通道透镜阵列的离轴偏移量和通光口径大小联合优化的方法,并采用双电动光阑高速控制三个成像通道的切换速度。最后,设计了一个基于单传感器的焦距为30 mm,工作波段分别为480~900 nm、900~1700 nm和480~1700 nm的三波段共口径光学系统,设计及分析结果表明该系统具有成像质量好、结构紧凑、无运动光学元件、成像波段切换速度快等优点。
The existing multi-band imaging system poses issues of large volume, high power consumption, and difficulty in integrating design. To address these challenges, we proposed a solution in the form of a design methodology for a single sensor based three-band co-aperture imaging optical system. First, a 1×2 multi-band lens array in the aperture stop of the optical system is designed. This array effectively captures both the visible and short-wave infrared bands simultaneously in a single image plane. In addition, the imaging position deviation of the center wavelength of both bands are controlled to within one pixel, resulting in dual-band fusion imaging. To address the issue of different diffraction limits in multi-band imaging, we propose to use the joint optimization method to simultaneously control the off-axis offset and aperture size of the split channel lens array. In addition, we suggest utilizing a dual electric diaphragm to control the switching speed of the three imaging channels. Finally, a single sensor based three-band co-aperture optical system with a focal length of 30 mm and operating bands ranging from 480 to 900 nm, from 900 to 1700 nm, and from 480 to 1700 nm is designed. The system exhibits multiple advantages, such as excellent imaging quality, a compact structure, no moving optical elements, and a rapid switching speed of the imaging band, as indicated by the design and analysis results.
图 1 基于单传感器的三波段共口径光学系统的成像原理图
Figure 1. Imaging schematic diagram of a single sensor based three-band co-aperture optical system
图 7 1 300 nm与660 nm的成像位置偏差图
Figure 7. Schematic diagram of imaging position deviation curves for 1 300 nm and 660 nm
表 1 三波段光学系统的设计指标要求
Table 1. Design specifications of the three-band optical system
参 数 | 数 值 |
焦距/mm | 30 |
工作谱段1/nm | 480~900 |
工作谱段2/nm | 900~1700 |
工作谱段3/nm | 480~1700 |
F数 (480~900 nm) | 5.0 |
F数 (900~1700 nm) | 3.0 |
视场2ω/(°) | 16 |
畸变/% | ≤0.8 |
MTF(@100 lp/mm) | ≥0.20 |
表 2 光学系统公差分配表
Table 2. Tolerance distribution of optical system
公差项 | 数值 |
光圈/fringe | ≤2 |
元件厚度/mm | ±0.02 |
表面偏心/mm | ±0.01 |
元件倾斜/(°) | ±0.01 |
元件偏心/mm | ±0.01 |
表面不规则度/fringe | ≤0.2 |
折射率 | ±0.001 |
阿贝数/% | ±0.3 |
表 3 光学系统的敏感公差
Table 3. Sensitivity tolerances of optical system
480~900 nm | 900~1 700 nm | ||
敏感公差项 | MTF变化 | 敏感公差项 | MTF变化 |
透镜6阿贝数 | −0.043 | 透镜6折射率 | −0.047 |
透镜5折射率 | −0.043 | 透镜5折射率 | −0.046 |
透镜6折射率 | −0.035 | 透镜2偏心 | −0.046 |
透镜1与2间隔 | −0.031 | 透镜1与2间隔 | −0.046 |
透镜9与10间隔 | −0.030 | 透镜1偏心 | −0.039 |
透镜1厚度 | −0.027 | 透镜1厚度 | −0.038 |
透镜2阿贝数 | −0.026 | 透镜2表面偏心 | −0.037 |
[1] | 李西杰, 刘钧, 陈阳. 双波段大变倍比连续共变焦光学系统设计[J]. 光子学报,2016,45(10):1022003. doi: 10.3788/gzxb20164510.1022003 LI X J, LIU J, CHEN Y. Design of dual-band, high zoom ratio and continuous co-focal optical system[J]. Acta Photonica Sinica, 2016, 45(10): 1022003. (in Chinese). doi: 10.3788/gzxb20164510.1022003 |
[2] | 刘凯, 陈荣利, 常凌颖, 等. 共口径双通道红外扫描成像光学系统[J]. 应用光学,2012,33(2):395-401.LIU K, CHEN R L, CHANG L Y, et al. Common-aperture dual-channel infrared scanning imaging optical system[J]. Journal of Applied Optics, 2012, 33(2): 395-401. (in Chinese). |
[3] |
吴洪波, 张新, 王灵杰, 等. 单光子激光与中波红外共口径探测光学系统[J]. 光学 精密工程,2021,29(6):1260-1269.
doi:
10.37188/OPE.20212906.1260
|
[4] | 郭钰琳, 于洵, 蔡珂珺, 等. 可见光/中波红外双波段共口径光学系统设计[J]. 红外技术,2018,40(2):125-132.GUO Y L, YU X, CAI K J, et al. Optical design of TV/IR dual-band common-aperture system[J]. Infrared Technology, 2018, 40(2): 125-132. (in Chinese). |
[5] | 虞红, 费锦东, 张盈, 等. 共口径多波段复合场景仿真技术[J]. 红外与激光工程,2011,40(9):1629-1633.YU H, FEI J D, ZHANG Y, et al. Common aperture combination simulation technology for multi-spectral scene[J]. Infrared and Laser Engineering, 2011, 40(9): 1629-1633. (in Chinese). |
[6] | SMEESTERS L, BELAY G Y, OTTEVAERE H, et al. Two-channel multiresolution refocusing imaging system using a tunable liquid lens[J]. Applied Optics, 2014, 53(18): 4002-4010. doi: 10.1364/AO.53.004002 |
[7] | 程志峰, 刘福贺, 荀显超. 双波段共口径成像系统光机设计与分析[J]. 红外与激光工程,2015,44(11):3366-3372.CHENG ZH F, LIU F H, XUN X CH. Opto-mechanical design and analysis of dual-band sharing aperture imaging system[J]. Infrared and Laser Engineering, 2015, 44(11): 3366-3372. (in Chinese). |
[8] | 岳宝毅, 刘钧, 郭佳, 等. 折/衍共口径红外双波段位标指示器光学系统设计[J]. 红外与激光工程,2019,48(4):418003. doi: 10.3788/IRLA201948.0418003 YUE B Y, LIU J, GUO J, et al. Optical system design of folded/diffractive co-aperture infrared dual-band beam positioner[J]. Infrared and Laser Engineering, 2019, 48(4): 418003. (in Chinese). doi: 10.3788/IRLA201948.0418003 |
[9] | 陈晓阳, 高明. 机载双波段共口径光电瞄准光学系统设计[J]. 红外与激光工程,2021,50(5):20200322. doi: 10.3788/IRLA20200322 CHEN X Y, GAO M. Design of airborne dual-band common aperture photoelectric aiming optical system[J]. Infrared and Laser Engineering, 2021, 50(5): 20200322. (in Chinese). doi: 10.3788/IRLA20200322 |
[10] | PARK K W, HAN J Y, BAE J, et al. Novel compact dual-band LOROP camera with telecentricity[J]. Optics Express, 2012, 20(10): 10921-10932. doi: 10.1364/OE.20.010921 |
[11] | LI R CH, FENG L J, XU K J, et al. Optical design of an integrated imaging system of optical camera and synthetic aperture radar[J]. Optics Express, 2021, 29(22): 36796-36812. doi: 10.1364/OE.438979 |
[12] | 马占鹏, 薛要克, 沈阳, 等. 可见/红外双色共孔径光学系统设计及实现[J]. 光子学报,2021,50(5):24-32. doi: 10.3788/gzxb20215005.0511002 MA ZH P, XUE Y K, SHEN Y, et al. Design and realization of visible/LWIR dual-color common aperture optical system[J]. Acta Photonica Sinica, 2021, 50(5): 24-32. (in Chinese). doi: 10.3788/gzxb20215005.0511002 |
[13] | ZHANG K, QU ZH, ZHONG X, et al. Design of binocular stereo vision optical system based on a single lens and a single sensor[J]. Applied Optics, 2022, 61(23): 6690-6696. doi: 10.1364/AO.461564 |
[14] | 韩培仙, 任戈, 刘永, 等. 可见/中波双波段共口径光学系统设计[J]. 应用光学,2020,41(3):435-440. doi: 10.5768/JAO202041.0301001 HAN P X, REN G, LIU Y, et al. Optical design of VIS/MWIR dual-band common-aperture system[J]. Journal of Applied Optics, 2020, 41(3): 435-440. (in Chinese). doi: 10.5768/JAO202041.0301001 |
[15] | YU J, SHEN ZH X, WANG ZH SH. Compact dual band/dual FOV infrared imaging system with freeform prism[J]. Optics Letters, 2021, 46(4): 829-832. doi: 10.1364/OL.412091 |
[16] | BELAY G Y, OTTEVAERE H, MEURET Y, et al. Demonstration of a multichannel, multiresolution imaging system[J]. Applied Optics, 2013, 52(24): 6081-6089. doi: 10.1364/AO.52.006081 |
[17] | ZHANG K, LI J CH, SUN S, et al. Optical system design of double-sided telecentric microscope with high numerical aperture and long working distance[J]. Optics Express, 2023, 31(14): 23518-23532. doi: 10.1364/OE.496322 |