引用本文: |
|
Citation: | HOU Zheng-cheng, ZHANG Ming-ming, BAI Sheng-chuang, LI Shu-zhen, LIU Jun, HU You-you. 365彩票官网老虎机[J]. Chinese Optics. doi: 10.37188/CO.2023-0094 |
相较于单涡旋光束,涡旋阵列光束能够扩充信息的传输容量,研究其传输特性对其光通信应用具有重要意义。本文选取阶数为
Compared with a single vortex beam, vortex array beams can expand the transmission capacity of information, and the study of their propagation properties is of great significance for their optical communication applications. In this paper, we select the helical Ince-Gaussian (HIG
图 1 不同阶数的HIG模式初始光强与相位分布。(a)光强分布;(b)相位分布
Figure 1. Initial light intensity and phase distributions of HIG modes of different orders. (a) Intensity distributions; (b) phase distributions
图 2 不同阶数的HIG模式在不同距离下的光强与相位分布。(a)光强;(b)相位
Figure 2. Intensity and phase distribution of HIG modes with different orders at different distances. (a) Intensity; (b) phase
图 3 HIG模式在不同强度湍流下闪烁因子。湍流强度:(a)2×10−16 m−2/3;(b)2×10−15 m−2/3;(c)2×10−14 m−2/3
Figure 3. Scintillation index of HIG modes under different turbulence intensities. The turbulence intensity: (a) 2×10−16 m−2/3; (b) 2×10−15 m−2/3; (c) 2×10−14 m−2/3
图 4 HIG模式在不同湍流内尺度下的闪烁因子。大气湍流内尺度:(a)l 0=0.1 m;(b)大气湍流内尺度l 0=0.01 m;(c)大气湍流内尺度l 0=0.005 m
Figure 4. Scintillation index of HIG modes at different turbulence inner scales. Atmospheric turbulence inner scale: (a) l 0=0.1 m; (b) l 0=0.01 m; (c) l 0=0.005 m
图 5 HIG模式在不同强度湍流下质心漂移标准差。湍流强度:(a)2×10−16 m−2/3;(b)2×10−15 m−2/3;(c)2×10−14 m−2/3
Figure 5. Standard deviation of spot centroid wander of HIG modes under different turbulence intensities. The turbulence intensity: (a)2×10−16 m−2/3; (b) 2×10−15 m−2/3; (c) 2×10−14 m−2/3
图 6 不同子光束数的LAVBs在不同距离下的光强与相位分布
Figure 6. Intensity and phase distribution of LAVBs with different subbeam numbers at different distances
图 7 LAVBs在不同距离下的质心漂移标准差与闪烁因子。(a)质心漂移标准差;(b)闪烁因子
Figure 7. Standard deviation of spot centroid wander and scintillation index of LAVBs at different distances. (a) standard deviation of spot centroid wander; (b) scintillation index
图 8 不同种类的HIG p,m 光束的光强分布。(a) HIG4,4,ζ=1.6;(b) HIG4,4,ζ=4;(c) HIG6,4,ζ=2;(d) HIG8,4,ζ=2
Figure 8. The intensity distribution of different kinds of HIG p,m beams. (a) HIG4,4, ζ=1.6; (b) HIG4,4, ζ=4; (c) HIG6,4, ζ=2; (d) HIG8,4, ζ=2
图 9 (a)HIG4,4光束的闪烁因子随椭圆参量的变化;(b)HIG4,4光束的质心漂移标准差随椭圆参量的变化;(c)不同椭圆环数的HIG光束的闪烁因子;(d)不同椭圆环数的HIG光束的质心漂移标准差
Figure 9. (a) scintillation index of HIG4,4 beams as a function of ellipticity parameter; (b) standard deviation of spot centroid wander of HIG4,4 beams as a function of ellipticity parameter; (c) scintillation index of HIG beams with different elliptic ring numbers; (d) standard deviation of spot centroid wander of HIG beams with different elliptic ring numbers
[1] | BAI Y H, LV H R, FU X, et al. Vortex beam: generation and detection of orbital angular momentum [Invited][J]. Chinese Optics Letters, 2022, 20(1): 012601. doi: 10.3788/COL202220.012601 |
[2] | WANG J, YANG J Y, FAZAL I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488-496. doi: 10.1038/nphoton.2012.138 |
[3] | PADGETT M, BOWMAN R. Tweezers with a twist[J]. Nature Photonics, 2011, 5(6): 343-348. doi: 10.1038/nphoton.2011.81 |
[4] | WESTPHAL V, RIZZOLI S O, LAUTERBACH M A, et al. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement[J]. Science, 2008, 320(5873): 246-249. doi: 10.1126/science.1154228 |
[5] | NICOLAS A, VEISSIER L, GINER L, et al. A quantum memory for orbital angular momentum photonic qubits[J]. Nature Photonics, 2014, 8(3): 234-238. doi: 10.1038/nphoton.2013.355 |
[6] |
KOLMOGOROV A N. Equations of turbulent motion in an incompressible fluid[J].
Dokl. Akad. Nauk SSSR, 1941, 30(4): 299-303. (查阅网上资料, 未能确认本条文献修改是否正确, 请确认)(查阅网上资料, 未能确认刊名信息, 请确认).
|
[7] | 王飞, 余佳益, 刘显龙, 等. 部分相干光束经过湍流大气传输研究进展[J]. 物理学报,2018,67(18):184203. doi: 10.7498/aps.67.20180877 WANG F, YU J Y, LIU X L, et al. Research progress of partially coherent beams propagation in turbulent atmosphere[J]. Acta Physica Sinica, 2018, 67(18): 184203. (in Chinese). doi: 10.7498/aps.67.20180877 |
[8] | WANG SH L, CHENG M J, YANG X H, et al. Self-focusing effect analysis of a perfect optical vortex beam in atmospheric turbulence[J]. Optics Express, 2023, 31(13): 20861-20871. doi: 10.1364/OE.492275 |
[9] |
王红星, 吴晓军, 宋博. 海上大气湍流中光束漂移模型分析[J]. 中国激光,2016,43(2):0213001.
doi:
10.3788/CJL201643.0213001
|
[10] | ZHUANG Y, YANG Q X, WU P F, et al. Vortex beam array generated by a volume compound fork grating in lithium niobite[J]. Results in Physics, 2021, 24: 104083. doi: 10.1016/j.rinp.2021.104083 |
[11] | FAN H H, ZHANG H, CAI C Y, et al. Flower-shaped optical vortex array[J]. Annalen der Physik, 2021, 533(4): 2000575. doi: 10.1002/andp.202000575 |
[12] | YUAN J P, ZHANG H F, WU CH H, et al. Creation and control of vortex-beam arrays in atomic vapor[J]. Laser & Photonics Reviews, 2023, 17(5): 2200667. |
[13] | 吴武明, 宁禹, 任亚杰, 等. 阵列光束在湍流大气中传输的光强闪烁研究进展[J]. 激光与光电子学进展,2012,49(7):070008.WU W M, NING Y, REN Y J, et al. Research progress of scintillations for laser array beams in atmospheric turbulence[J]. Laser & Optoelectronics Progress, 2012, 49(7): 070008. (in Chinese). |
[14] |
骆传凯, 卢芳, 苗志芳, 等. 径向阵列涡旋光束在大气中的传输与扩展[J]. 光学学报,2019,39(6):0601004.
doi:
10.3788/AOS201939.0601004
LUO CH K, LU F, MIAO ZH F,
et al. Propagation and spreading of radial vortex beam array in atmosphere[J].
Acta Optica Sinica, 2019, 39(6): 0601004. (in Chinese).
doi:
|
[15] | 牛超君, 卢芳, 韩香娥. 相位屏法模拟高斯阵列光束海洋湍流传输特性[J]. 光学学报,2018,38(6):0601004. doi: 10.3788/AOS201838.0601004 NIU CH J, LU F, HAN X E. Propagation properties of Gaussian array beams transmitted in oceanic turbulence simulated by phase screen method[J]. Acta Optica Sinica, 2018, 38(6): 0601004. (in Chinese). doi: 10.3788/AOS201838.0601004 |
[16] | LUO CH K, LU F, HAN X E. Propagation and evolution of rectangular vortex beam array through atmospheric turbulence[J]. Optik, 2020, 218: 164913. doi: 10.1016/j.ijleo.2020.164913 |
[17] | 陈盼盼, 屈军, 周正仙, 等. 阵列光束在各向异性湍流大气传输时的光束漂移[J]. 量子电子学报,2019,36(3):270-277. CHEN P P, QU J, ZHOU ZH X, et al. Beam wander of array beams propagating through anisotropic turbulent atmosphere[J]. Chinese Journal of Quantum Electronics, 2019, 36(3): 270-277. (in Chinese). |
[18] | MA X L, LIU D J, WANG Y CH, et al. Propagation of rectangular multi-Gaussian Schell-model array beams through free space and non-Kolmogorov turbulence[J]. Applied Sciences, 2020, 10(2): 450. doi: 10.3390/app10020450 |
[19] | 凡顺利. 大气中阵列合成光束稳态热晕的数值模拟[D]. 西安: 西安电子科技大学, 2018.FAN SH L. Numerical simulation of steady-state thermal blooming of array composite beams in atmosphere[D]. Xi’an: Xidian University, 2018. (in Chinese). |
[20] | 张明明, 白胜闯, 董俊. Ince-Gaussian模式激光的研究进展[J]. 激光与光电子学进展,2016,53(2):020002.ZHANG M M, BAI SH CH, DONG J. Advances in Ince-Gaussian modes laser[J]. Laser & Optoelectronics Progress, 2016, 53(2): 020002. (in Chinese). |
[21] | WOERDEMANN M, ALPMANN C, DENZ C. Optical assembly of microparticles into highly ordered structures using Ince-Gaussian beams[J]. Applied Physics Letters, 2011, 98(11): 111101. doi: 10.1063/1.3561770 |
[22] | ROBERTSON E, PIRES D G, DAI K J, et al. Constant-envelope modulation of Ince-Gaussian beams for high bandwidth underwater wireless optical communications[J]. Journal of Lightwave Technology, 2023, 41(16): 5209-5216. doi: 10.1109/JLT.2023.3252466 |
[23] | YU Y, CHEN Y, WANG CH Y, et al. Optical storage of Ince-Gaussian modes in warm atomic vapor[J]. Optics Letters, 2021, 46(5): 1021-1024. doi: 10.1364/OL.414762 |
[24] | GONZÁLEZ-DOMÍNGUEZ M A, PICENO-MARTÍNEZ A E, ROSALES-ZÁRATE L E C. Nonlocality and quantum correlations in Ince-Gauss structured light modes[J]. Journal of the Optical Society of America B, 2023, 40(4): 881-890. doi: 10.1364/JOSAB.482580 |
[25] | EYYUBOĞLU H T. Propagation analysis of Ince-Gaussian beams in turbulent atmosphere[J]. Applied Optics, 2014, 53(11): 2290-2296. doi: 10.1364/AO.53.002290 |
[26] | NARVÁEZ CASTAÑEDA E, GUERRA VÁZQUEZ J C, RAMÍREZ ALARCÓN R, et al. Ince-Gauss beams in a turbulent atmosphere: the effect of structural parameters on beam resilience[J]. Optics Continuum, 2022, 1(8): 1777-1794. doi: 10.1364/OPTCON.461875 |
[27] | 卢芳. 阵列光束在湍流大气中的传输及目标散射回波特性[D]. 西安: 西安电子科技大学, 2016.LU F. Propagation and target scattered characteristics of array beams in turbulent atmosphere[D]. Xi’an: Xidian University, 2016. (in Chinese). |
[28] | GRAYSHAN K J, VETELINO F S, YOUNG C Y. A marine atmospheric spectrum for laser propagation[J]. Waves in Random and Complex Media, 2008, 18(1): 173-184. doi: 10.1080/17455030701541154 |
[29] | SUN B Y, LÜ H, WU D, et al. Propagation of a modified complex Lorentz–Gaussian-correlated beam in a marine atmosphere[J]. Photonics, 2021, 8(3): 82. doi: 10.3390/photonics8030082 |
[30] | 杨天星. 海洋湍流相位屏模型及该模型下OAM光束传输特性研究[D]. 南京: 南京邮电大学, 2018.YANG T X. Study on the ocean turbulence phase screen model and the transmission characteristics of OAM beam under this model[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2018. (in Chinese). |