材料名称 | 弹性模量/GPa | 泊松比 | 密度/(kg*m−1) |
聚丙烯板 | 89 | 0.42 | 910 |
裸光纤 | 72 | 0.17 | 2203 |
硅胶 | 0.01 | 0.48 | 1084 |
引用本文: | 王彦, 徐浩雨, 汪俊亮, 朱伟, 蒋超. 365彩票官网网页版[J]. 365赌球. doi: 10.37188/CO.2023-0088 |
Citation: | WANG Yan, XU Haoyu, WANG Jun-liang, ZHU Wei, JIANG Chao. 365彩票官网[J]. Chinese Optics. doi: 10.37188/CO.2023-0088 |
为了提高柔性机器人抓握传感中掌心表面的重构精度,本文基于COMSOL仿真,在436 mm×436 mm×2 mm聚丙烯板上,采用7只经聚二甲基硅氧烷(PDMS)封装的光纤光栅(FBG)柔性传感器,选取环形布设的方式,在板末端中心与两角分别受力的情况下,使用光纤光栅解调仪采集实验中的传感器数据,并通过三次样条插值法进行连续化,设定数个平面Y与拟合圆环相交,计算过点函数获得三维曲面点集,实现了空间曲面的拟合可视化显示。在曲面末端中心受力时,板末端位移最小相对误差为0.549%,最大相对误差为8.300%,最小绝对误差为0.051 cm,最大绝对误差为1.255 cm,板末端两角受力时,板面重构末端位移最小相对误差为2.546%,最大相对误差为14.289%,最小绝对误差为0.005 cm,最大绝对误差为0.729 cm。实验结果为柔性机器人掌心抓握传感提供了应用基础。
To improve the accuracy of palm surface reconstruction in flexible robot grasp sensing, this study conducts a COMSOL simulation to select a ring arrangement comprising of 7 fiber Bragg grating (FBG) flexible sensors packaged with polydimethylsiloxane (PDMS) on a 436 mm×436 mm×2 mm polypropylene plate. Assuming that the center and two corner ends of the plate were subjected to stress, respectively, we collected sensor data using a fiber grating demodulation instrument during the experiment. The data was continuously interpolated using cubic spline interpolation. Several planes Y intersected with the fitting ring which created a three-dimensional surface. We calculated the point function to obtain the point set and achieve a fitting visual display of the spatial surface. The plate experienced a minimum relative error of 0.549% in end displacement, with a maximum relative error of 8.300%. the center of the surface’s end yielded a minimum absolute error of 0.051 cm, and a maximum absolute error of 1.255 cm. When both corners at the end of the plate are under stress, a minimum relative error of 2.546%, and a maximum relative error of 14.289% arise in plate reconstruction end displacement. The minimum absolute error is 0.005 cm, and the maximum absolute error is 0.729 cm. These experimental results provide a foundation to implement palm grip sensing in flexible robots.
图 3 传感器1~7在不同曲率下的中心波长偏移量
Figure 3. Center wavelength offsets of sensors 1~7 under different curvatures
图 10 末端左角450 g(上),右角800 g(下)
Figure 10. 450 g at the left corner of the end (upper), 800 g at the right corner (lower)
表 1 实验材料参数
Table 1. Experimental material parameters
材料名称 | 弹性模量/GPa | 泊松比 | 密度/(kg*m−1) |
聚丙烯板 | 89 | 0.42 | 910 |
裸光纤 | 72 | 0.17 | 2203 |
硅胶 | 0.01 | 0.48 | 1084 |
[1] |
陈小丽, 张波, 李杰, 等. 非接触电感式角位移传感器的设计与校准[J]. 仪器仪表学报,2022,43(2):36-42.
doi:
|
[2] | RIZA M A, GO Y I, HARUN S W, et al. FBG sensors for environmental and biochemical applications-a review[J]. IEEE Sensors Journal, 2020, 20(14): 7614-7627. doi: 10.1109/JSEN.2020.2982446 |
[3] | 曲道明, 孙广开, 李红, 等. 变形机翼柔性蒙皮形状光纤传感及重构方法[J]. 仪器仪表学报,2018,39(1):144-151. doi: 10.19650/j.cnki.cjsi.j1702537 QU D M, SUN G K, LI H, et al. Optical fiber sensing and reconstruction method for morphing wing flexible skin shape[J]. Chinese Journal of Scientific Instrument, 2018, 39(1): 144-151. (in Chinese). doi: 10.19650/j.cnki.cjsi.j1702537 |
[4] | 郭永兴, 张航, 熊丽, 等. 基于光纤布拉格光栅的扑翼机器人三维扑动变形测量[J]. 光学 精密工程,2023,31(9):1304-1313. doi: 10.37188/OPE.20233109.1304 GUO Y X, ZHANG H, XIONG L, et al. Fiber Bragg grating based 3D flutter deformation measurement of flapping wing robot[J]. Optics and Precision Engineering, 2023, 31(9): 1304-1313. (in Chinese). doi: 10.37188/OPE.20233109.1304 |
[5] | 王文娟, 薛景锋, 张梦杰, 等. 基于光纤传感的结构变形实时监测技术研究[J]. 航空科学技术,2022,33(12):97-104. doi: 10.19452/j.issn1007-5453.2022.12.011 WANG W J, XUE J F, ZHANG M J, et al. Research on real-time monitoring technology of structural deformation based on optical fiber sensing[J]. Aeronautical Science & Technology, 2022, 33(12): 97-104. (in Chinese). doi: 10.19452/j.issn1007-5453.2022.12.011 |
[6] | 郭永兴, 杨跃辉, 熊丽. 双层正交的光纤布拉格光栅柔性形状传感技术[J]. 光学 精密工程,2021,29(10):2306-2315. doi: 10.37188/OPE.20212910.2306 GUO Y X, YANG Y H, XIONG L. Double-layer orthogonal fiber Bragg gratings flexible shape sensing technology[J]. Optics and Precision Engineering, 2021, 29(10): 2306-2315. (in Chinese). doi: 10.37188/OPE.20212910.2306 |
[7] | 王永祥, 徐东华, 李春香, 等. 基于准分布式FBG传感网络的挖泥船耙管形状重构试验[J]. 船舶工程,2021,43(11):17-21,83. doi: 10.13788/j.cnki.cbgc.2021.11.04 WANG Y X, XU D H, LI CH X, et al. Experiment on shape reconstruction of Dredger's suction pipe based on quasi-distributed FBG sensor network[J]. Ship Engineering, 2021, 43(11): 17-21,83. (in Chinese). doi: 10.13788/j.cnki.cbgc.2021.11.04 |
[8] | 赵利明, 董明利, 李红, 等. 仿生柔性触角形状感知光纤传感方法研究[J]. 激光与红外,2018,48(4):509-514.ZHAO L M, DONG M L, LI H, et al. Research on shape sensing fiber optic sensing method of bionic flexible antenna[J]. Laser & Infrared, 2018, 48(4): 509-514. (in Chinese). |
[9] |
梁磊, 胡程辉, 戴澍, 等. 基于FBG传感技术的管道曲率监测试验研究[J]. 光电子·激光,2021,32(5):499-504.
doi:
10.16136/j.joel.2021.05.0374
LIANG L, HU CH H, DAI SH,
et al. Experimental research on pipeline curvature monitoring based on FBG sensing technology[J].
Journal of Optoelectronics·Laser, 2021, 32(5): 499-504. (in Chinese).
doi:
|
[10] | 安其昌, 吴小霞, 张景旭, 等. 大口径巡天望远镜分区域曲率传感方法研究[J]. 中国光学(中英文),2023,16(2):358-365. doi: 10.37188/CO.2022-0117 AN Q CH, WU X X, ZHANG J X, et al. Sub region curvature sensing method for survey telescope with larger aperture[J]. Chinese Optics, 2023, 16(2): 358-365. (in Chinese). doi: 10.37188/CO.2022-0117 |
[11] |
谭明享, 张东生. 基于频域反射的分布式光纤传感变形重构研究[J]. 光通信技术,2021,45(12):17-20.
doi:
10.13921/j.cnki.issn1002-5561.2021.12.005
TAN M X, ZHANG D SH. Research on deformation reconstruction of distributed optical fiber sensing based on frequency domain reflection[J].
Optical Communication Technology, 2021, 45(12): 17-20. (in Chinese).
doi:
|
[12] |
龙雨恒, 孙世政, 党晓圆. 一种十字型阵列的光纤光栅柔性力觉传感器[J]. 传感技术学报,2020,33(7):940-944.
doi:
10.3969/j.issn.1004-1699.2020.07.003
LONG Y H, SUN SH ZH, DANG X Y. A flexible force sensor with fiber Bragg grating cruciform array[J].
Chinese Journal of Sensors and Actuators, 2020, 33(7): 940-944. (in Chinese).
doi:
|
[13] | 朱晓锦, 季玲晓, 张合生, 等. 基于空间正交曲率信息的三维曲线重构方法分析[J]. 应用基础与工程科学学报,2011,19(2):305-313.ZHU X J, JI X L, ZHANG H SH, et al. Analysis of 3D curve reconstruction method using orthogonal curvatures[J]. Journal of Basic Science and Engineering, 2011, 19(2): 305-313. (in Chinese). |
[14] | 张新荣, 王鑫, 王瑶, 等. 基于转动式二维激光扫描仪和多传感器的三维重建方法[J]. 中国光学(中英文),2023,16(3):663-672. doi: 10.37188/CO.2022-0159 ZHANG X R, WANG X, WANG Y, et al. 3D reconstruction method based on a rotating 2D laser scanner and multi-sensor[J]. Chinese Optics, 2023, 16(3): 663-672. (in Chinese). doi: 10.37188/CO.2022-0159 |