[1] |
李文龙, 李中伟, 毛金城. iPoint3D曲面检测软件开发与工程应用综述[J]. 机械工程学报,2020,56(7):127-150.
doi:
10.3901/JME.2020.07.127
LI W L, LI ZH W, MAO J CH. The development and application review of iPoint3D software for surface inspection[J].
Journal of Mechanical Engineering, 2020, 56(7): 127-150. (in Chinese)
doi:
10.3901/JME.2020.07.127
|
[2] |
李茂月, 刘泽隆, 赵伟翔, 等. 面结构光在机检测的叶片反光抑制技术[J]. 中国光学,2022,15(3):464-475.
doi:
10.37188/CO.2021-0194
LI M Y, LIU Z L, ZHAO W X,
et al. Blade reflection suppression technology based on surface structured light on-machine detection[J].
Chinese Optics, 2022, 15(3): 464-475. (in Chinese)
doi:
10.37188/CO.2021-0194
|
[3] |
任明阳, 王立忠, 赵建博, 等. 复杂曲面零件面结构光扫描视点规划[J]. 中国光学,2023,16(1):113-126.
doi:
10.37188/CO.2022-0026
REN M Y, WANG L ZH, ZHAO J B,
et al. Viewpoint planning of surface structured light scanning for complex surface parts[J].
Chinese Optics, 2023, 16(1): 113-126. (in Chinese)
doi:
10.37188/CO.2022-0026
|
[4] |
张宗华, 刘巍, 刘国栋, 等. 三维视觉测量技术及应用进展[J]. 中国图象图形学报,2021,26(6):1483-1502.ZHANG Z H, LIU W, LIU G D,
et al. Overview of the development and application of 3D vision measurement technology[J].
Journal of Image and Graphics, 2021, 26(6): 1483-1502. (in Chinese)
|
[5] |
XU J, ZHANG S. Status, challenges, and future perspectives of fringe projection profilometry[J].
Optics and Lasers in Engineering, 2020, 135: 106193.
doi:
10.1016/j.optlaseng.2020.106193
|
[6] |
张宗华, 于瑾, 高楠, 等. 高反光表面三维形貌测量技术[J]. 红外与激光工程,2020,49(3):0303006.
doi:
10.3788/IRLA202049.0303006
ZHANG Z H, YU J, GAO N,
et al. Three-dimensional shape measurement techniques of shiny surfaces[J].
Infrared and Laser Engineering, 2020, 49(3): 0303006. (in Chinese)
doi:
10.3788/IRLA202049.0303006
|
[7] |
FENG S J, ZHANG L, ZUO CH,
et al. High dynamic range 3D measurements with fringe projection profilometry: a review[J].
Measurement Science and Technology, 2018, 29(12): 122001.
doi:
10.1088/1361-6501/aae4fb
|
[8] |
ZHANG P, ZHONG K, LI ZH W,
et al. Hybrid-quality-guided phase fusion model for high dynamic range 3D surface measurement by structured light technology[J].
Optics Express, 2022, 30(9): 14600-14614.
doi:
10.1364/OE.457305
|
[9] |
Zhang S. Rapid and automatic optimal exposure control for digital fringe projection technique[J].
Optics and Lasers in Engineering, 2020, 128: 106029.
doi:
10.1016/j.optlaseng.2020.106029
|
[10] |
马泽龙, 高慧斌, 余毅, 等. 采用图像直方图特征函数的高速相机自动曝光方法[J]. 光学 精密工程,2017,25(4):1026-1035.
doi:
10.3788/OPE.20172504.1026
MA Z L, GAO H B, YU Y,
et al. Auto exposure control for high frame rate camerausing image histogram feature function[J].
Optics and Precision Engineering, 2017, 25(4): 1026-1035. (in Chinese)
doi:
10.3788/OPE.20172504.1026
|
[11] |
雷经发, 陆宗胜, 李永玲, 等. 基于投影栅相位法和多曝光图像融合技术的强反射表面轮廓检测[J]. 光学 精密工程,2022,30(18):2195-2204.
doi:
10.37188/OPE.20223018.2195
LEI J F, LU Z SH, LI Y L,
et al. High reflection surface topography measurement based on fringe projection phase method and multi-exposure image fusion technology[J].
Optics and Precision Engineering, 2022, 30(18): 2195-2204. (in Chinese)
doi:
10.37188/OPE.20223018.2195
|
[12] |
ZHANG S, YAU S T. High dynamic range scanning technique[J].
Optical Engineering, 2009, 48(3): 033604.
doi:
10.1117/1.3099720
|
[13] |
SONG ZH, JIANG H L, LIN H B,
et al. A high dynamic range structured light means for the 3D measurement of specular surface[J].
Optics and Lasers in Engineering, 2017, 95: 8-16.
doi:
10.1016/j.optlaseng.2017.03.008
|
[14] |
FENG SH J, ZHANG Y ZH, CHEN Q,
et al. General solution for high dynamic range three-dimensional shape measurement using the fringe projection technique[J].
Optics and Lasers in Engineering, 2014, 59: 56-71.
doi:
10.1016/j.optlaseng.2014.03.003
|
[15] |
CUI H H, LI ZH J, TIAN W,
et al. Multiple-exposure adaptive selection algorithm for high dynamic range 3D fringe projection measurement[J].
Proceedings of SPIE, 2019, 11053: 110530M.
|
[16] |
RAO L, DA F P. High dynamic range 3D shape determination based on automatic exposure selection[J].
Journal of Visual Communication and Image Representation, 2018, 50: 217-226.
doi:
10.1016/j.jvcir.2017.12.003
|
[17] |
WU K, TAN J, XIA H L,
et al. An exposure fusion-based structured light approach for the 3D measurement of a specular surface[J].
IEEE Sensors Journal, 2021, 21(5): 6314-6324.
doi:
10.1109/JSEN.2020.3027317
|
[18] |
SALAHIEH B, CHEN ZH Y, RODRIGUEZ J J,
et al. Multi-polarization fringe projection imaging for high dynamic range objects[J].
Optics Express, 2014, 22(8): 10064-10071.
doi:
10.1364/OE.22.010064
|
[19] |
平茜茜, 刘勇, 董欣明, 等. 基于偏振双目视觉的无纹理高反光目标三维重构[J]. 红外与毫米波学报,2017,36(4):432-438.
PING X X, LIU Y, DONG X M,
et al. 3-D reconstruction of textureless and high-reflective target by polarization and binocular stereo vision[J].
Journal of Infrared and Millimeter Waves, 2017, 36(4): 432-438. (in Chinese)
|
[20] |
郝婧蕾, 赵永强, 赵海盟, 等. 偏振多光谱机器视觉的高反光无纹理目标三维重构方法[J]. 测绘学报,2018,47(6):816-824.HAO J L, ZHAO Y Q, ZHAO H M,
et al. 3D Reconstruction of High-reflective and Textureless Targets Based on Multispectral Polarization and Machine Vision[J].
Acta Geodaetica et Cartographica Sinica, 2018, 47(6): 816-824. (in Chinese)
|
[21] |
FENG SH J, ZHANG Y ZH, CHEN Q,
et al. General solution for high dynamic range three-dimensional shape measurement using the fringe projection technique[J].
Optics and Lasers in Engineering, 2014, 59: 56-71. .
doi:
10.1016/j.optlaseng.2014.03.003
|
[22] |
ZHU ZH M, ZHU W T, ZHOU F Q,
et al. Three-dimensional measurement of fringe projection based on the camera response function of the polarization system[J].
Optical Engineering, 2021, 60(5): 055105.
|
[23] |
MAEDA Y, SHIBATA S, HAGEN N,
et al. Single shot 3D profilometry by polarization pattern projection[J].
Applied Optics, 2020, 59(6): 1654-1659.
doi:
10.1364/AO.382690
|
[24] |
XIANG G, ZHU H J, GUO H W. Spatial phase-shifting profilometry by use of polarization for measuring 3D shapes of metal objects[J].
Optics Express, 2021, 29(13): 20981-20994.
doi:
10.1364/OE.427407
|
[25] |
王月敏, 张宗华, 高楠. 基于全场条纹反射的镜面物体三维面形测量综述[J]. 光学 精密工程,2018,26(5):1014-1027.
doi:
10.3788/OPE.20182605.1014
WANG Y M, ZHANG Z H, GAO N. Review on three-dimensional surface measurements of specular objects based on full-field fringe reflection[J].
Optics and Precision Engineering, 2018, 26(5): 1014-1027. (in Chinese)
doi:
10.3788/OPE.20182605.1014
|
[26] |
ZHUANG Y CH, ZHENG Y M, LIN SH B,
et al. Surface shape distortion online measurement method for compact laser cavities based on phase measuring Deflectometry[J].
Photonics, 2022, 9(3): 151.
doi:
10.3390/photonics9030151
|
[27] |
GAO F, XU Y J, JIANG X Q. Near optical coaxial phase measuring deflectometry for measuring structured specular surfaces[J].
Optics Express, 2022, 30(10): 17554-17566.
doi:
10.1364/OE.457198
|
[28] |
HAN H, WU SH Q, SONG ZH. Curved LCD based deflectometry method for specular surface measurement[J].
Optics and Lasers in Engineering, 2022, 151: 106909.
doi:
10.1016/j.optlaseng.2021.106909
|
[29] |
SU P, PARKS R E, WANG L R,
et al. Software configurable optical test system: a computerized reverse Hartmann test[J].
Applied Optics, 2010, 49(23): 4404-4412.
doi:
10.1364/AO.49.004404
|
[30] |
邵山川, 陶小平, 王孝坤. 基于条纹反射的超精密车削反射镜的在位面形检测[J]. 激光与光电子学进展,2018,55(7):071203.SHAO SH CH, TAO X P, WANG X K. On-machine surface shape measurement of reflective mirrors by ultra-precision turning based on fringe reflection[J].
Laser & Optoelectronics Progress, 2018, 55(7): 071203. (in Chinese)
|
[31] |
袁婷. 基于条纹反射法的大口径非球面反射镜面形检测技术研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2016.YUAN T. Study on fringe-reflection optical surface shape measurement technology for large aspheric mirror[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, CAS, 2016. (in Chinese)
|
[32] |
OH C J, LOWMAN A E, SMITH G A,
et al. Fabrication and testing of 4.2m off-axis aspheric primary mirror of Daniel K. Inouye Solar Telescope[J].
Proceedings of SPIE, 2016, 9912: 99120O.
|
[33] |
WOODHAM R J. Photometric method for determining surface orientation from multiple images[J].
Optical Engineering, 1980, 19(1): 191139.
|
[34] |
LU L, QI L, LUO Y S,
et al. Three-dimensional reconstruction from single image base on combination of CNN and multi-spectral photometric stereo[J].
Sensors, 2018, 18(3): 764.
doi:
10.3390/s18030764
|
[35] |
张颖, 李金龙, 黄趾维, 等. 基于BRDF模型的金属表面反射特性及相变特性研究[J]. 光电技术应用,2017,32(3):32-35.
doi:
10.3969/j.issn.1673-1255.2017.03.008
ZHANG Y, LI J L, HUANG ZH W,
et al. Research on reflection and phase shift characters of metal surface based on BRDF model[J].
Electro-Optic Technology Application, 2017, 32(3): 32-35. (in Chinese)
doi:
10.3969/j.issn.1673-1255.2017.03.008
|
[36] |
王金海, 李华, 魏力. 基于C-T模型的光学元件加工表面的光学特性研究[J]. 光学技术,2021,47(2):172-177.WANG J H, LI H, WEI L. Study on optical properties of machining surface of optical element based on C-T model[J].
Optical Technique, 2021, 47(2): 172-177.
|
[37] |
PEI X H, REN M J, WANG X,
et al. Profile measurement of non-Lambertian surfaces by integrating fringe projection profilometry with near-field photometric stereo[J].
Measurement, 2022, 187: 110277.
doi:
10.1016/j.measurement.2021.110277
|
[38] |
MENG L F, LU L Y, BEDARD N,
et al. Single-shot specular surface reconstruction with gonio-plenoptic imaging[C].
IEEE International Conference on Computer Vision, IEEE, 2015: 3433-3441.
|
[39] |
WADDINGTON C, KOFMAN J. Analysis of measurement sensitivity to illuminance and fringe-pattern gray levels for fringe-pattern projection adaptive to ambient lighting[J].
Optics and Lasers in Engineering, 2010, 48(2): 251-256.
doi:
10.1016/j.optlaseng.2009.07.001
|
[40] |
LI D, KOFMAN J. Adaptive fringe-pattern projection for image saturation avoidance in 3D surface-shape measurement[J].
Optics Express, 2014, 22(8): 9887-9901.
doi:
10.1364/OE.22.009887
|
[41] |
JIANG H ZH, ZHAO H J, LI X D. High dynamic range fringe acquisition: a novel 3-D scanning technique for high-reflective surfaces[J].
Optics and Lasers in Engineering, 2012, 50(10): 1484-1493.
doi:
10.1016/j.optlaseng.2011.11.021
|
[42] |
WANG J H, YANG Y X, ZHOU Y G. 3-D shape reconstruction of non-uniform reflectance surface based on pixel intensity, pixel color and camera exposure time adaptive adjustment[J].
Scientific Reports, 2021, 11(1): 4700.
doi:
10.1038/s41598-021-83779-9
|
[43] |
SUN J H, ZHANG Q Y. A 3D shape measurement method for high-reflective surface based on accurate adaptive fringe projection[J].
Optics and Lasers in Engineering, 2022, 153: 106994.
doi:
10.1016/j.optlaseng.2022.106994
|
[44] |
BABAIE G, ABOLBASHARI M, FARAHI F. Dynamics range enhancement in digital fringe projection technique[J].
Precision Engineering, 2015, 39: 243-251.
doi:
10.1016/j.precisioneng.2014.06.007
|
[45] |
CHEN CH, GAO N, WANG X J,
et al. Adaptive pixel-to-pixel projection intensity adjustment for measuring a shiny surface using orthogonal color fringe pattern projection[J].
Measurement Science and Technology, 2018, 29(5): 055203.
doi:
10.1088/1361-6501/aab07a
|
[46] |
冯维, 徐仕楠, 王恒辉, 等. 逐像素调制的高反光表面三维测量方法[J]. 中国光学,2022,15(3):488-497.
doi:
10.37188/CO.2021-0220
FENG W, XU SH N, WANG H H,
et al. Three-dimensional measurement method of highly reflective surface based on per-pixel modulation[J].
Chinese Optics, 2022, 15(3): 488-497. (in Chinese)
doi:
10.37188/CO.2021-0220
|
[47] |
李乾, 薛俊鹏, 张启灿, 等. 利用相机响应曲线实现高反光元件三维面形测量[J]. 光学学报,2022,42(7):0712001.
doi:
10.3788/AOS202242.0712001
LI Q, XUE J P, ZHANG Q C,
et al. Three dimensional shape measurement of high reflective elements using camera response curve[J].
Acta Optica Sinica, 2022, 42(7): 0712001. (in Chinese)
doi:
10.3788/AOS202242.0712001
|
[48] |
SHAFER S A. Using color to separate reflection components[J].
Color Research & Application, 1985, 10(4): 210-218.
|
[49] |
WANG J H, YANG Y X. High-speed three-dimensional measurement technique for object surface with a large range of reflectivity variations[J].
Applied Optics, 2018, 57(30): 9172-9182.
doi:
10.1364/AO.57.009172
|
[50] |
CHUA S Y, LIM C C, ENG S K,
et al. Improved high dynamic range for 3D shape measurement based on saturation of the coloured fringe[J].
Pertanika Journal of Science & Technology, 2021, 29(2): 759-770.
|
[51] |
YIN Y K, CAI Z W, JIANG H,
et al. High dynamic range imaging for fringe projection profilometry with single-shot raw data of the color camera[J].
Optics and Lasers in Engineering, 2017, 89: 138-144.
doi:
10.1016/j.optlaseng.2016.08.019
|
[52] |
ZHENG Y, WANG Y J, SURESH V,
et al. Real-time high-dynamic-range fringe acquisition for 3D shape measurement with a RGB camera[J].
Measurement Science and Technology, 2019, 30(7): 075202.
doi:
10.1088/1361-6501/ab0ced
|
[53] |
LIU Y ZH, FU Y J, ZHUAN Y H,
et al. High dynamic range real-time 3D measurement based on Fourier transform profilometry[J].
Optics & Laser Technology, 2021, 138: 106833.
|
[54] |
CHEN Y M, HE Y M, HU E Y. Phase deviation analysis and phase retrieval for partial intensity saturation in phase-shifting projected fringe profilometry[J].
Optics Communications, 2008, 281(11): 3087-3090.
doi:
10.1016/j.optcom.2008.01.070
|
[55] |
JIANG C F, BELL T, ZHANG S. High dynamic range real-time 3D shape measurement[J].
Optics Express, 2016, 24(7): 7337-7346.
doi:
10.1364/OE.24.007337
|
[56] |
WANG M M, DU G L, ZHOU C L,
et al. Enhanced high dynamic range 3D shape measurement based on generalized phase-shifting algorithm[J].
Optics Communications, 2017, 385: 43-53.
doi:
10.1016/j.optcom.2016.10.023
|
[57] |
ZUO C, HUANG L, ZHANG M L,
et al. Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review[J].
Optics and Lasers in Engineering, 2016, 85: 84-103.
doi:
10.1016/j.optlaseng.2016.04.022
|
[58] |
CHEN B, ZHANG S. High-quality 3D shape measurement using saturated fringe patterns[J].
Optics and Lasers in Engineering, 2016, 87: 83-89.
doi:
10.1016/j.optlaseng.2016.04.012
|
[59] |
HE Z X, LI P L, ZHAO X Y,
et al. Chessboard-like high-frequency patterns for 3D measurement of reflective surface[J].
IEEE Transactions on Instrumentation and Measurement, 2021, 70: 5009712.
|
[60] |
HU Y, CHEN Q, LIANG Y CH,
et al. Microscopic 3D measurement of shiny surfaces based on a multi-frequency phase-shifting scheme[J].
Optics and Lasers in Engineering, 2019, 122: 1-7.
doi:
10.1016/j.optlaseng.2019.05.019
|
[61] |
张启灿, 吴周杰. 基于格雷码图案投影的结构光三维成像技术[J]. 红外与激光工程,2020,49(3):0303004.
doi:
10.3788/IRLA202049.0303004
ZHANG Q C, WU ZH J. Three-dimensional imaging technique based on Gray-coded structured illumination[J].
Infrared and Laser Engineering, 2020, 49(3): 0303004. (in Chinese)
doi:
10.3788/IRLA202049.0303004
|
[62] |
SONG ZH, CHUNG R, ZHANG X T. An accurate and robust strip-edge-based structured light means for shiny surface micromeasurement in 3-D[J].
IEEE Transactions on Industrial Electronics, 2013, 60(3): 1023-1032.
doi:
10.1109/TIE.2012.2188875
|
[63] |
LU L L, WU ZH J, ZHANG Q C,
et al. High-efficiency dynamic three-dimensional shape measurement based on misaligned Gray-code light[J].
Optics and Lasers in Engineering, 2022, 150: 106873.
doi:
10.1016/j.optlaseng.2021.106873
|
[64] |
ZUO CH, QIAN J M, FENG SH J,
et al. Deep learning in optical metrology: a review[J].
Light:Science & Applications, 2022, 11(1): 39.
|
[65] |
REYES-FIGUEROA A, FLORES V H, RIVERA M. Deep neural network for fringe pattern filtering and normalization[J].
Applied Optics, 2021, 60(7): 2022-2036.
doi:
10.1364/AO.413404
|
[66] |
JEON W, JEONG W, SON K,
et al. Speckle noise reduction for digital holographic images using multi-scale convolutional neural networks[J].
Optics Letters, 2018, 43(17): 4240-4243.
doi:
10.1364/OL.43.004240
|
[67] |
ZHANG B W, LIN SH N, LIN J Y,
et al. Single-shot high-precision 3D reconstruction with color fringe projection profilometry based BP neural network[J].
Optics Communications, 2022, 517: 128323.
doi:
10.1016/j.optcom.2022.128323
|
[68] |
NGUYEN H, WANG ZH Y. Accurate 3D shape reconstruction from single structured-light image via fringe-to-fringe network[J].
Photonics, 2021, 8(11): 459.
doi:
10.3390/photonics8110459
|
[69] |
FENG SH J, ZUO CH, YIN W,
et al. Micro deep learning profilometry for high-speed 3D surface imaging[J].
Optics and Lasers in Engineering, 2019, 121: 416-427.
doi:
10.1016/j.optlaseng.2019.04.020
|
[70] |
LIU Y, BLUNT L, GAO F,
et al. High-dynamic-range 3D measurement for E-beam fusion additive manufacturing based on SVM intelligent fringe projection system[J].
Surface Topography:Metrology and Properties, 2021, 9(3): 034002.
doi:
10.1088/2051-672X/ac0c62
|
[71] |
彭广泽, 陈文静. 基于卷积神经网络去噪正则化的条纹图修复[J]. 光学学报,2020,40(18):1810002.
doi:
10.3788/AOS202040.1810002
PENG G Z, CHEN W J. Fringe pattern inpainting based on convolutional neural network denoising regularization[J].
Acta Optica Sinica, 2020, 40(18): 1810002. (in Chinese)
doi:
10.3788/AOS202040.1810002
|
[72] |
YANG G W, YANG M, ZHOU N,
et al. High dynamic range fringe pattern acquisition based on deep neural network[J].
Optics Communications, 2022, 512: 127765.
doi:
10.1016/j.optcom.2021.127765
|
[73] |
QIAO G, HUANG Y Y, SONG Y P,
et al. A single-shot phase retrieval method for phase measuring deflectometry based on deep learning[J].
Optics Communications, 2020, 476: 126303.
doi:
10.1016/j.optcom.2020.126303
|
[74] |
ZHANG L, CHEN Q, ZUO CH,
et al. High-speed high dynamic range 3D shape measurement based on deep learning[J].
Optics and Lasers in Engineering, 2020, 134: 106245.
doi:
10.1016/j.optlaseng.2020.106245
|
[75] |
HU Y, CHEN Q, TAO T Y,
et al. Absolute three-dimensional micro surface profile measurement based on a Greenough-type stereomicroscope[J].
Measurement Science and Technology, 2017, 28(4): 045004.
doi:
10.1088/1361-6501/aa5a2d
|
[76] |
陈龙, 王文聪, 张峰峰, 等. 基于双目结构光的术中肝脏表面局部亮度饱和分区投影[J]. 光学 精密工程,2021,29(11):2590-2602.
doi:
10.37188/OPE.20212911.2590
CHEN L, WANG W C, ZHANG F F,
et al. Zonal projection based on binocular structured light for localized luminance saturation of intraoperative liver surface[J].
Optics and Precision Engineering, 2021, 29(11): 2590-2602. (in Chinese)
doi:
10.37188/OPE.20212911.2590
|