留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
王金艳, 马放, 郑磊, 田东贺, 陈曦, 郑权. 365赌球[J]. 365赌球. doi: 10.37188/CO.2023-0058
引用本文: 王金艳, 马放, 郑磊, 田东贺, 陈曦, 郑权. 365赌球[J]. 365赌球. doi: 10.37188/CO.2023-0058
WANG Jin-yan, MA Fang, ZHENG Lei, TIAN Dong-he, CHEN Xi, ZHENG Quan. 365赌球[J]. Chinese Optics. doi: 10.37188/CO.2023-0058
Citation: WANG Jin-yan, MA Fang, ZHENG Lei, TIAN Dong-he, CHEN Xi, ZHENG Quan. 365赌球[J]. Chinese Optics. doi: 10.37188/CO.2023-0058

365赌球

doi: 10.37188/CO.2023-0058
基金项目:长春市科技发展计划重点研发专项(No. 21ZGG15)
详细信息
    作者简介:

    王金艳(1988—),女,吉林长春人,高级工程师,2013年于长春理工大学获得光学硕士学位,现任职于长春新产业光电技术有限公司,主要从事固体激光器技术与应用方面的研究。 Email:[email protected]

    陈 曦(1985—),女,吉林长春人,高级工程师,2012年于长春理工大学获得光学硕士学位,现任职于长春新产业光电技术有限公司,主要从事固体激光器技术与应用方面的研究 。 E-mail:[email protected]

  • 中图分类号:TN248.1

365赌球

Funds:Supported by
More Information
  • 摘要:

    紫外激光器是研究紫外共振拉曼光谱的重要工具,拉曼信号可以通过共振拉曼效应得到增强,提高拉曼测量的探测极限。本文研究了一种输出波长为228 nm的窄脉宽全固态紫外激光器。首先,以Nd:YVO4作为增益介质,采用电光调Q腔倒空技术,实现纳秒量级914 nm基频光输出。然后经过偏硼酸锂(LBO)晶体产生二次谐波,最终经偏硼酸钡(BBO)晶体获得四次谐波228 nm紫外激光。研究了不同重复频率时基频光和倍频光功率的变化规律,优化了紫外激光的输出效率。当总抽运功率为30W时,在10kHz重复频率下,获得最高平均功率为84 mW的228 nm紫外激光输出。228 nm激光在5 kHz~25 kHz重复频率范围内连续可调,脉冲宽度保持在2.8~2.9 ns。能够满足紫外光谱检测技术领域的应用需求。

  • 图 1 Nd3+离子跃迁能级图

    Figure 1. Nd3+ ion transition energy-level diagram

    图 2 914 nm基频光实验装置示意图

    Figure 2. Experimental setup of 914 nm fundamental frequency laser

    图 3 简化谐振腔示意图

    Figure 3. Schematic diagram of a simple resonant cavity

    图 4 不同腔长时,晶体内基模半径随抽运功率的变化

    Figure 4. Variation of the the fundamental mode radius in crystals with different cavity length and pump power

    图 5 228 nm激光实验装置

    Figure 5. 228 nm laser experimental setup

    图 6 914nm激光的平均功率与脉冲能量

    Figure 6. Average output power and peak power at different repetition rate for 914nm laser

    图 7 457nm激光的平均功率与脉冲能量

    Figure 7. Average output power and the peak power at different repetition rate for 457nm laser

    图 8 228 nm光谱测试图

    Figure 8. Spectrum of 228 nm laser

    图 9 228 nm激光平均功率与脉宽随频率的变化

    Figure 9. Average output power and pulse width of 228 nm laser at different repetition rate

    图 10 228 nm激光功率稳定性

    Figure 10. Power stability of 228 nm laser

    图 11 288 nm输出脉冲序列和脉宽:(a)、(b)分别为10 kHz时的脉冲序列和脉宽;(c)、(d)分别为18 kHz时的脉冲序列和脉宽

    Figure 11. Oscilloscope traces of pulse trains and pulse width of 228 nm laser:(a), (b) Pulse trains and pulse width at 10 kHz respectively; (c), (d) Pulse trains and pulse width at 18 kHz respectively

    图 12 紫外激光光斑强度分布图:(a)二维空间强度分布;(b)三维空间强度分布;(c)水平方向强度分布;(d)竖直方向强度分布

    Figure 12. Spot intensity distribution diagram of ultra-violet laser: (a) Two-dimensional spatial intensity distribution; (b) Three-dimensional spatial intensity distribution; (c) Horizontal intensity distribution; (d) Vertical intensity distribution

  • [1] 何玉青, 魏帅迎, 郭一新, 等. 远程紫外拉曼光谱检测技术研究进展[J]. 中国光学,2019,12(6):1249-1259. doi: 10.3788/co.20191206.1249

    HE Y Q, WEI SH Y, GUO Y X, et al. Research progress of remote detection with ultraviolet Raman spectroscopy[J]. Chinese Optics, 2019, 12(6): 1249-1259. (in Chinese) doi: 10.3788/co.20191206.1249
    [2] 吉于今, 楚学影, 董旭, 等. 紫外偏振敏感的CsPbBr3纳米薄膜的可见光发射(英文)[J]. 中国光学,2023,16(1):202-213. doi: 10.37188/CO.2022-0152

    JI Y J, CHU X Y, DONG X, et al. Visible light emission of ultraviolet polarization sensitive CsPbBr3 nano-films[J]. Chinese Optics, 2023, 16(1): 202-213. (in Chinese) doi: 10.37188/CO.2022-0152
    [3] HOLTUM T, BLOINO J, PAPPAS C, et al. Ultraviolet resonance Raman spectroscopy of anthracene: Experiment and theory[J]. Journal of Raman Spectroscopy, 2021, 52(12): 2292-2300. doi: 10.1002/jrs.6223
    [4] KUMAMOTO Y, TAGUCHI A, KAWATA S. Deep-ultraviolet biomolecular imaging and analysis[J]. Advanced Optical Materials, 2019, 7(5): 1801099. doi: 10.1002/adom.201801099
    [5] OJAGHI A, CARRAZANA G, CARUSO C, et al. Label-free hematology analysis using deep-ultraviolet microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(26): 14779-14789. doi: 10.1073/pnas.2001404117
    [6] SOLTANI S, OJAGHI A, ROBLES F E. Deep UV dispersion and absorption spectroscopy of biomolecules[J]. Biomedical Optics Express, 2019, 10(2): 487-499. doi: 10.1364/BOE.10.000487
    [7] SOLTANI S, OJAGHI A, QIAO H, et al. Prostate cancer histopathology using label-free multispectral deep-UV microscopy quantifies phenotypes of tumor aggressiveness and enables multiple diagnostic virtual stains[J]. Scientific Reports, 2022, 12(1): 9329. doi: 10.1038/s41598-022-13332-9
    [8] WYNN C M, PALMACCI S, KUNZ R R, et al. Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence[J]. Optics Express, 2010, 18(6): 5399-5406. doi: 10.1364/OE.18.005399
    [9] GAGNÉ M, KASHYAP R. New nanosecond Q-switched Nd: VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication[J]. Optics Communications, 2010, 283(24): 5028-5032. doi: 10.1016/j.optcom.2010.07.074
    [10] 牛娜, 窦微, 浦双双, 等. 蓝光二极管抽运Pr: YLF腔内倍频连续深紫外激光器[J]. 中国光学,2021,14(6):1395-1399. doi: 10.37188/CO.2021-0077

    NIU N, DOU W, PU SH SH, et al. Continuous deep ultraviolet laser by intracavity frequency doubling of blue laser diode pumped Pr: YLF[J]. Chinese Optics, 2021, 14(6): 1395-1399. (in Chinese) doi: 10.37188/CO.2021-0077
    [11] DEYRA L, MARTIAL I, DIDIERJEAN J, et al. Deep-UV 236.5 nm laser by fourth-harmonic generation of a single-crystal fiber Nd: YAG oscillator[J]. Optics Letters, 2014, 39(8): 2236-2239. doi: 10.1364/OL.39.002236
    [12] KANEDA Y, YARBOROUGH J M, MERZLYAK Y, et al. Continuous-wave, single-frequency 229 nm laser source for laser cooling of cadmium atoms[J]. Optics Letters, 2016, 41(4): 705-708. doi: 10.1364/OL.41.000705
    [13] BYKOV S V, ROPPEL R D, MAO M, et al. 228-nm quadrupled quasi-three-level Nd: GdVO4 laser for ultraviolet resonance Raman spectroscopy of explosives and biological molecules[J]. Journal of Raman Spectroscopy, 2020, 51(12): 2478-2488. doi: 10.1002/jrs.5999
    [14] DAI SH T, JIANG T, WU H CH, et al. Tunable narrow-linewidth 226 nm laser for hypersonic flow velocimetry[J]. Optics Letters, 2020, 45(8): 2291-2294. doi: 10.1364/OL.390347
    [15] 石朝辉, 刘学松, 黄玉涛, 等. 500kHz, 6 ns高重复频率电光腔倒空Nd: YVO4激光器[J]. 中国激光,2014,41(10):1002006. doi: 10.3788/CJL201441.1002006

    SHI ZH H, LIU X S, HUANG Y T, et al. 500kHz, 6 ns high repetition-rate electro-optical cavity dumped Nd: YVO4 laser[J]. Chinese Journal of Lasers, 2014, 41(10): 1002006. (in Chinese) doi: 10.3788/CJL201441.1002006
    [16] LIU K, CHEN Y, LI F Q, et al. High peak power 4.7 ns electro-optic cavity dumped TEM00 1342-nm Nd: YVO4 laser[J]. Applied Optics, 2015, 54(4): 717-720. doi: 10.1364/AO.54.000717
    [17] YU X, WANG C, MA Y F, et al. Performance improvement of high repetition rate electro-optical cavity-dumped Nd: GdVO4 laser[J]. Applied Physics B, 2012, 106(2): 309-313. doi: 10.1007/s00340-011-4786-7
    [18] LIU K, HE L J, BO Y, et al. Pulse width adjustable Q-switched cavity dumped laser by rotating a quarter-wave plate and a Pockels cell[J]. Optics Letters, 2017, 42(13): 2467-2470. doi: 10.1364/OL.42.002467
    [19] CHEN F, SUN J J, YAN R P, et al. Reabsorption cross section of Nd3+-doped quasi-three-level lasers[J]. Scientific Reports, 2019, 9(1): 5620. doi: 10.1038/s41598-019-42012-4
    [20] 王晓洋, 刘丽娟. 深紫外非线性光学晶体及全固态深紫外相干光源研究进展[J]. 中国光学,2020,13(3):427-441.

    WANG X Y, LIU L J. Research progress of deep-UV nonlinear optical crystals and all-solid-state deep-UV coherent light sources[J]. Chinese Optics, 2020, 13(3): 427-441. (in Chinese)
  • 加载中
图(12)
计量
  • 文章访问数: 109
  • HTML全文浏览量: 74
  • PDF下载量: 77
  • 被引次数: 0
365赌球最新网址
  • 网络出版日期: 2023-07-13

目录

    /

    返回文章
    返回