留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
胡金高娃, 赵尚男, 王灵杰, 叶昊坤, 张建萍, 张新. 365赌球最新网址[J]. 365赌球. doi: 10.37188/CO.2023-0039
引用本文: 胡金高娃, 赵尚男, 王灵杰, 叶昊坤, 张建萍, 张新. 365赌球最新网址[J]. 365赌球. doi: 10.37188/CO.2023-0039
HU Jin-gao-wa, ZHAO Shang-nan, WANG Ling-jie, YE Hao-kun, ZHANG Jian-ping, ZHANG Xin. 365赌球app下载中心[J]. Chinese Optics. doi: 10.37188/CO.2023-0039
Citation: HU Jin-gao-wa, ZHAO Shang-nan, WANG Ling-jie, YE Hao-kun, ZHANG Jian-ping, ZHANG Xin. 365赌球app下载中心[J]. Chinese Optics. doi: 10.37188/CO.2023-0039

365赌球最新网址

doi: 10.37188/CO.2023-0039
基金项目:国家自然科学基金项目(No. 62005271)
详细信息
    作者简介:

    胡金高娃(1999—),女,吉林长春人,硕士研究生,2021年于南京邮电大学获得学士学位,主要从事超构表面设计、光学设计仿真研究。E-mail:[email protected]

    赵尚男(1993—),女,吉林长春人,博士研究生,分别于2015年和2018年于北京理工大学获得学士学位和硕士学位,主要从事光学设计仿真、超构表面设计的研究。E-mail:[email protected]

  • 中图分类号:O436.1;TH74

365赌球app下载中心

Funds:Supported by the National Natural Science Foundation of China (No. 62005271)
More Information
  • 摘要:

    目的:超构透镜作为一种新型的平面光学元件,能够灵活操控光的相位、偏振、振幅,在器件轻量化和批量化制造等方面具有很大的发展和应用前景,目前受到了广泛关注。离轴超构透镜作为一种特殊的超构透镜且具有一定的色散作用,可作为分光元件,为实现微小型仪器提供了一种独特而可行的途径。本论文提出了一种离轴超构透镜的设计方法,并分析了不同数值孔径、离轴角度等参数对于离轴超构透镜的光谱分辨率、聚焦效率以及仿真结果的影响,为后续离轴超构透镜的研究与应用提供思路。方法:利用Lumerical软件分别仿真了参数为NA=0.408 α=13°、NA=0.180 α=13°、NA=0.408 α=20°等多个离轴超构透镜。结果:仿真结果表明:离轴角度与光谱分辨率大小成正相关,离轴角度越大,光谱分辨能力越强,但聚焦效率越低;当数值孔径越小时,相位分布的覆盖范围越小,会导致仿真与理论的聚焦位置偏差变大。结论:设计者需要根据需求合理平衡数值孔径、离轴角度等参数,最终实现理想效果。该研究结论对离轴超构透镜的理论分析和实际应用中的参数设计具有重要参考价值。

  • 图 1 离轴超构透镜聚焦示意图

    Figure 1. Diagram of focusing an off-axis meta-lens

    图 2 离轴超构透镜设计流程图

    Figure 2. Design flowchart of off-axis mate-lens

    图 3 不同半径单元结构对应的相位分布

    Figure 3. Phase distribution corresponding to unit structures of different radii

    图 4 仿真结构图

    Figure 4. Simulation structure diagram

    图 5 仿真结果图

    Figure 5. Simulation result of off-axis mate-lens

    图 6 D=30 μm,α=13°,λ 0=1.550 μm,f=32.986 μm时的相位分布与仿真结果图

    Figure 6. Phase distribution and simulation results for D=30 μm, α=13°, λ0=1.550 μm, f=32.986 μm

    图 7 D=30 μm,α=13°,λ 0=1.550 μm,f=80 μm时的相位分布与仿真结果图

    Figure 7. Phase distribution and simulation results for D=30 μm, α=13°, λ0=1.550 μm, f=80 μm

    图 8 $ |\Delta \vec{r}| $ 示意图

    Figure 8. Schematic diagram of $ |\Delta \vec{r}| $

    图 9 不同α的离轴超构透镜相位分布图

    Figure 9. Phase distribution of off-axis meta-lens with different α

    图 10 α=13°,不同λ入射时离轴超构透镜沿Z轴的光强分布图

    Figure 10. The intensity distribution of the off-axis meta-lens along Z axis with different λ incident when α=13°

    图 11 α=20°,不同λ入射时离轴超构透镜沿Z轴光强分布图

    Figure 11. Intensity distribution of the off-axis meta-lens along Z axis with different λ incident when α=20°

    图 12 NA=0.408时,不同离轴角度对应的聚焦效率曲线图

    Figure 12. Curve plot of focusing efficiency corresponding to different off axis angles at NA=0.408

    表  1 离轴超构透镜设计参数(单位:μm)

    Table  1. Main parameters of off-axis meta-lens (Unit: μm)

    参数 数值
    设计波长(μm) 1.550
    焦距(μm) 32.986
    离轴角度(°) 13
    数值孔径 0.408
    下载: 导出CSV

    表  2 不同NA的离轴超构透镜理论计算与仿真聚焦位置对比(单位:μm)

    Table  2. Comparison of theoretical calculation and simulation focusing positions of off-axis meta-lens with different NA (Unit: μm)

    NA 理论聚焦位置x-z 仿真聚焦位置x-z 相对偏差δx-δz
    0.408 (7.420, 32.141) (7.100, 31.200) (0.320, 0.941)
    0.180 (17.996, 77.950) (14, 62) (3.996, 15.950)
    下载: 导出CSV

    表  3 不同NA的离轴超构透镜理论计算与仿真聚焦位置对比(单位:μm)

    Table  3. Comparison of theoretical calculation and simulation focusing positions of off-axis meta-lens with different NA (Unit: μm)

    NA 理论聚焦位置x-z 仿真聚焦位置x-z 相对偏差δx-δz
    0.388 (14.975,29.391) (14.322,28.416) (0.653,0.975)
    0.371 (18.446,27.347) (17.638,26.300) (0.808,1.047)
    下载: 导出CSV

    表  4 离轴角度α=13°时不同工作波长对应的聚焦效率

    Table  4. Focusing efficiency of different working wavelengths at the off-axis angle α=13°

    工作波长 λ(μm) 聚焦效率
    1.550 59.14%
    2.022 29.32%
    2.800 18.42%
    3.000 17.65%
    下载: 导出CSV
  • [1] 徐碧洁, 陈向宁, 赵峰, 等. 近红外波长超透镜的设计与仿真[J]. 激光与红外,2021,51(11):1466-1471.

    XU B J, CHEN X N, ZHAO F, et al. Near-infrared wavelength metalens design and simulation[J]. Laser &Infrared, 2021, 51(11): 1466-1471. (in Chinese)
    [2] 刘逸天, 陈琦凯, 唐志远, 等. 超表面透镜的像差分析和成像技术研究[J]. 中国光学,2021,14(4):831-850. doi: 10.37188/CO.2021-0014

    LIU Y T, CHEN Q K, TANG ZH Y, et al. Research progress of aberration analysis and imaging technology based on metalens[J]. Chinese Optics, 2021, 14(4): 831-850. (in Chinese) doi: 10.37188/CO.2021-0014
    [3] WANG Y J, CHEN Q M, YANG W H, et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window[J]. Nature Communications, 2021, 12: 5560. doi: 10.1038/s41467-021-25797-9
    [4] LIN P, LIN Y SH, LIN J, et al. Stretchable metalens with tunable focal length and achromatic characteristics[J]. Results in Physics, 2021, 31: 105005. doi: 10.1016/j.rinp.2021.105005
    [5] SHAN D ZH, XU N X, GAO J S, et al. Design of the all-silicon long-wavelength infrared achromatic metalens based on deep silicon etching[J]. Optics Express, 2022, 30(8): 13616-13629. doi: 10.1364/OE.449870
    [6] 林若雨, 吴一凡, 付博妍, 等. 超构透镜的色差调控应用[J]. 中国光学,2021,14(4):764-781. doi: 10.37188/CO.2021-0096

    LIN R Y, WU Y F, FU B Y, et al. Application of chromatic aberration control of metalens[J]. Chinese Optics, 2021, 14(4): 764-781. (in Chinese) doi: 10.37188/CO.2021-0096
    [7] LI M M, LI SH SH, CHIN L K, et al. Dual-layer achromatic metalens design with an effective abbe number[J]. Optics Express, 2020, 28(18): 26041-26055. doi: 10.1364/OE.402478
    [8] SHAN D ZH, GAO J S, XU N X, et al. Bandpass filter integrated metalens based on electromagnetically induced transparency[J]. Nanomaterials, 2022, 12(13): 2282. doi: 10.3390/nano12132282
    [9] ZUO R ZH, LIU W W, CHENG H, et al. Breaking the diffraction limit with radially polarized light based on dielectric metalenses[J]. Advanced Optical Materials, 2018, 6(21): 1800795. doi: 10.1002/adom.201800795
    [10] LI Y Y, CAO L Y, WEN ZH Q, et al. Broadband quarter-wave birefringent meta-mirrors for generating sub-diffraction vector fields[J]. Optics Letters, 2019, 44(1): 110-113. doi: 10.1364/OL.44.000110
    [11] LI R ZH, GUO ZH Y, WEI W, et al. Arbitrary focusing lens by holographic metasurface[J]. Photonics Research, 2015, 3(5): 252-255. doi: 10.1364/PRJ.3.000252
    [12] SAJEDIAN I, LEE H, RHO J. Double-deep Q-learning to increase the efficiency of metasurface holograms[J]. Scientific Reports, 2019, 9(1): 10899. doi: 10.1038/s41598-019-47154-z
    [13] 付娆, 李子乐, 郑国兴. 超构表面的振幅调控及其功能器件研究进展[J]. 中国光学,2021,14(4):886-899. doi: 10.37188/CO.2021-0017

    FU R, LI Z L, ZHENG G X. Research development of amplitude-modulated metasurfaces and their functional devices[J]. Chinese Optics, 2021, 14(4): 886-899. (in Chinese) doi: 10.37188/CO.2021-0017
    [14] AVAYU O, ALMEIDA E, PRIOR Y, et al. Composite functional metasurfaces for multispectral achromatic optics[J]. Nature Communications, 2017, 8(1): 14992. doi: 10.1038/ncomms14992
    [15] JIN J J, PU M B, WANG Y Q, et al. Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial[J]. Advanced Materials Technologies, 2017, 2(2): 1600201. doi: 10.1002/admt.201600201
    [16] WEI Q SH, HUANG L L, LI X W, et al. Broadband multiplane holography based on plasmonic metasurface[J]. Advanced Optical Materials, 2017, 5(18): 1700434. doi: 10.1002/adom.201700434
    [17] CHENG H, WEI X Y, YU P, et al. Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces[J]. Applied Physics Letters, 2017, 110(17): 171903. doi: 10.1063/1.4982240
    [18] BAI W, YANG P, WANG SH, et al. Actively tunable metalens array based on patterned phase change materials[J]. Applied Sciences, 2019, 9(22): 4927. doi: 10.3390/app9224927
    [19] YU P, LI J X, ZHANG SH, et al. Dynamic Janus metasurfaces in the visible spectral region[J]. Nano Letters, 2018, 18(7): 4584-4589. doi: 10.1021/acs.nanolett.8b01848
    [20] SHE A, ZHANG SH Y, SHIAN S, et al. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift[J]. Science Advances, 2018, 4(2): eaap9957. doi: 10.1126/sciadv.aap9957
    [21] KHORASANINEJAD M, CHEN W T, OH J, et al. Super-dispersive off-axis meta-lenses for compact high resolution spectroscopy[J]. Nano Letters, 2016, 16(6): 3732-3737. doi: 10.1021/acs.nanolett.6b01097
    [22] ZHU A Y, CHEN W T, KHORASANINEJAD M, et al. Ultra-compact visible chiral spectrometer with meta-lenses[J]. APL Photonics, 2017, 2(3): 036103. doi: 10.1063/1.4974259
    [23] ZHOU Y, CHEN R, MA Y G. Design of optical wavelength demultiplexer based on off-axis meta-lens[J]. Optics Letters, 2017, 42(22): 4716-4719. doi: 10.1364/OL.42.004716
    [24] ZHOU Y, CHEN R, MA Y G. Characteristic analysis of compact spectrometer based on off-axis meta-lens[J]. Applied Sciences, 2018, 8(3): 321. doi: 10.3390/app8030321
    [25] ZHU A Y, CHEN W T, SISLER J, et al. Compact aberration‐corrected spectrometers in the visible using dispersion‐tailored metasurfaces[J]. Advanced Optical Materials, 2019, 7(14): 1801144. doi: 10.1002/adom.201801144
    [26] 罗先刚. 亚波长电磁学: 上册[M]. 北京: 科学出版社, 2017: 208-214.

    LUO X G. Sub-Wavelength Electromagnetics:Vol. 1[M]. Beijing: Science Press, 2017: 208-214. (in Chinese)
    [27] XIAO S Y, ZHAO F, WANG D Y, et al. Inverse design of a near-infrared metalens with an extended depth of focus based on double-process genetic algorithm optimization[J]. Optics Express, 2023, 31(5): 8668-8681. doi: 10.1364/OE.484471
    [28] 丁继飞, 刘文兵, 李含辉, 等. 大焦深离轴超透镜的设计与制作[J]. 物理学报,2021,70(19):197802. doi: 10.7498/aps.70.20202235

    DING J F, LIU W B, LI H H, et al. Design and fabrication of off-axis meta-lens with large focal depth[J]. Acta Physica Sinica, 2021, 70(19): 197802. (in Chinese) doi: 10.7498/aps.70.20202235
    [29] BANERJI S, MEEM M, MAJUMDER A, et al. Imaging with flat optics: metalenses or diffractive lenses?[J]. Optica, 2019, 6(6): 805-810. doi: 10.1364/OPTICA.6.000805
  • 加载中
图(12) /表(4)
计量
  • 文章访问数: 147
  • HTML全文浏览量: 50
  • PDF下载量: 107
  • 被引次数: 0
365赌球注册网站
  • 网络出版日期: 2023-07-13

目录

    /

    返回文章
    返回