参数 | 数值 |
设计波长(μm) | 1.550 |
焦距(μm) | 32.986 |
离轴角度(°) | 13 |
数值孔径 | 0.408 |
引用本文: | 胡金高娃, 赵尚男, 王灵杰, 叶昊坤, 张建萍, 张新. 365赌球最新网址[J]. 365赌球. doi: 10.37188/CO.2023-0039 |
Citation: | HU Jin-gao-wa, ZHAO Shang-nan, WANG Ling-jie, YE Hao-kun, ZHANG Jian-ping, ZHANG Xin. 365赌球app下载中心[J]. Chinese Optics. doi: 10.37188/CO.2023-0039 |
As a new type of planar optical element, meta-lens can flexibly control the phase, polarization and amplitude of light. They have great potential for device lightweighting and mass manufacturing, and have garnered widespread attention. Off-axis meta-lens, a special type of meta-lens with certain dispersion effect, can be used as a spectral element, providing a unique and feasible way to realize micro instruments. This paper proposes a design method for off-axis meta-lens and analyzes the effects of numerical aperture, off-axis angle, and incident wavelength on the simulation deviation, resolution and focusing efficiency of off-axis meta-lenses, which provides valuable insights for subsequent research and application of off-axis meta-lenses.
Several off-axis meta-lenses with parameters
The simulation results indicate that the off-axis angle is directly proportional to the spectral resolution. As the angle increases, t the spectral resolution becomes larger, but the focusing efficiency decreases. A smaller numerical aperture result in a smaller coverage of the phase distribution, leading to a larger deviation between the simulation and theory.
Designers need to reasonably balance parameters such as numerical aperture and off-axis angle according to the requirements to finally achieve the desired effect. The conclusion of this study is an important reference value for theoretical analysis and parameter design of off-axis meta-lens in practical application.
图 3 不同半径单元结构对应的相位分布
Figure 3. Phase distribution corresponding to unit structures of different radii
图 6 D=30 μm,α=13°,λ 0=1.550 μm,f=32.986 μm时的相位分布与仿真结果图
Figure 6. Phase distribution and simulation results for D=30 μm, α=13°, λ0=1.550 μm, f=32.986 μm
图 7 D=30 μm,α=13°,λ 0=1.550 μm,f=80 μm时的相位分布与仿真结果图
Figure 7. Phase distribution and simulation results for D=30 μm, α=13°, λ0=1.550 μm, f=80 μm
图 10 α=13°,不同λ入射时离轴超构透镜沿Z轴的光强分布图
Figure 10. The intensity distribution of the off-axis meta-lens along Z axis with different λ incident when α=13°
图 11 α=20°,不同λ入射时离轴超构透镜沿Z轴光强分布图
Figure 11. Intensity distribution of the off-axis meta-lens along Z axis with different λ incident when α=20°
图 12 NA=0.408时,不同离轴角度对应的聚焦效率曲线图
Figure 12. Curve plot of focusing efficiency corresponding to different off axis angles at NA=0.408
表 1 离轴超构透镜设计参数(单位:μm)
Table 1. Main parameters of off-axis meta-lens (Unit: μm)
参数 | 数值 |
设计波长(μm) | 1.550 |
焦距(μm) | 32.986 |
离轴角度(°) | 13 |
数值孔径 | 0.408 |
表 2 不同NA的离轴超构透镜理论计算与仿真聚焦位置对比(单位:μm)
Table 2. Comparison of theoretical calculation and simulation focusing positions of off-axis meta-lens with different NA (Unit: μm)
NA | 理论聚焦位置x-z | 仿真聚焦位置x-z | 相对偏差δx-δz |
0.408 | (7.420, 32.141) | (7.100, 31.200) | (0.320, 0.941) |
0.180 | (17.996, 77.950) | (14, 62) | (3.996, 15.950) |
表 3 不同NA的离轴超构透镜理论计算与仿真聚焦位置对比(单位:μm)
Table 3. Comparison of theoretical calculation and simulation focusing positions of off-axis meta-lens with different NA (Unit: μm)
NA | 理论聚焦位置x-z | 仿真聚焦位置x-z | 相对偏差δx-δz |
0.388 | (14.975,29.391) | (14.322,28.416) | (0.653,0.975) |
0.371 | (18.446,27.347) | (17.638,26.300) | (0.808,1.047) |
表 4 离轴角度α=13°时不同工作波长对应的聚焦效率
Table 4. Focusing efficiency of different working wavelengths at the off-axis angle α=13°
工作波长 λ(μm) | 聚焦效率 |
1.550 | 59.14% |
2.022 | 29.32% |
2.800 | 18.42% |
3.000 | 17.65% |
[1] | 徐碧洁, 陈向宁, 赵峰, 等. 近红外波长超透镜的设计与仿真[J]. 激光与红外,2021,51(11):1466-1471.XU B J, CHEN X N, ZHAO F, et al. Near-infrared wavelength metalens design and simulation[J]. Laser &Infrared, 2021, 51(11): 1466-1471. (in Chinese) |
[2] | 刘逸天, 陈琦凯, 唐志远, 等. 超表面透镜的像差分析和成像技术研究[J]. 中国光学,2021,14(4):831-850. doi: 10.37188/CO.2021-0014 LIU Y T, CHEN Q K, TANG ZH Y, et al. Research progress of aberration analysis and imaging technology based on metalens[J]. Chinese Optics, 2021, 14(4): 831-850. (in Chinese) doi: 10.37188/CO.2021-0014 |
[3] | WANG Y J, CHEN Q M, YANG W H, et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window[J]. Nature Communications, 2021, 12: 5560. doi: 10.1038/s41467-021-25797-9 |
[4] | LIN P, LIN Y SH, LIN J, et al. Stretchable metalens with tunable focal length and achromatic characteristics[J]. Results in Physics, 2021, 31: 105005. doi: 10.1016/j.rinp.2021.105005 |
[5] | SHAN D ZH, XU N X, GAO J S, et al. Design of the all-silicon long-wavelength infrared achromatic metalens based on deep silicon etching[J]. Optics Express, 2022, 30(8): 13616-13629. doi: 10.1364/OE.449870 |
[6] | 林若雨, 吴一凡, 付博妍, 等. 超构透镜的色差调控应用[J]. 中国光学,2021,14(4):764-781. doi: 10.37188/CO.2021-0096 LIN R Y, WU Y F, FU B Y, et al. Application of chromatic aberration control of metalens[J]. Chinese Optics, 2021, 14(4): 764-781. (in Chinese) doi: 10.37188/CO.2021-0096 |
[7] | LI M M, LI SH SH, CHIN L K, et al. Dual-layer achromatic metalens design with an effective abbe number[J]. Optics Express, 2020, 28(18): 26041-26055. doi: 10.1364/OE.402478 |
[8] | SHAN D ZH, GAO J S, XU N X, et al. Bandpass filter integrated metalens based on electromagnetically induced transparency[J]. Nanomaterials, 2022, 12(13): 2282. doi: 10.3390/nano12132282 |
[9] | ZUO R ZH, LIU W W, CHENG H, et al. Breaking the diffraction limit with radially polarized light based on dielectric metalenses[J]. Advanced Optical Materials, 2018, 6(21): 1800795. doi: 10.1002/adom.201800795 |
[10] | LI Y Y, CAO L Y, WEN ZH Q, et al. Broadband quarter-wave birefringent meta-mirrors for generating sub-diffraction vector fields[J]. Optics Letters, 2019, 44(1): 110-113. doi: 10.1364/OL.44.000110 |
[11] | LI R ZH, GUO ZH Y, WEI W, et al. Arbitrary focusing lens by holographic metasurface[J]. Photonics Research, 2015, 3(5): 252-255. doi: 10.1364/PRJ.3.000252 |
[12] | SAJEDIAN I, LEE H, RHO J. Double-deep Q-learning to increase the efficiency of metasurface holograms[J]. Scientific Reports, 2019, 9(1): 10899. doi: 10.1038/s41598-019-47154-z |
[13] | 付娆, 李子乐, 郑国兴. 超构表面的振幅调控及其功能器件研究进展[J]. 中国光学,2021,14(4):886-899. doi: 10.37188/CO.2021-0017 FU R, LI Z L, ZHENG G X. Research development of amplitude-modulated metasurfaces and their functional devices[J]. Chinese Optics, 2021, 14(4): 886-899. (in Chinese) doi: 10.37188/CO.2021-0017 |
[14] | AVAYU O, ALMEIDA E, PRIOR Y, et al. Composite functional metasurfaces for multispectral achromatic optics[J]. Nature Communications, 2017, 8(1): 14992. doi: 10.1038/ncomms14992 |
[15] | JIN J J, PU M B, WANG Y Q, et al. Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial[J]. Advanced Materials Technologies, 2017, 2(2): 1600201. doi: 10.1002/admt.201600201 |
[16] | WEI Q SH, HUANG L L, LI X W, et al. Broadband multiplane holography based on plasmonic metasurface[J]. Advanced Optical Materials, 2017, 5(18): 1700434. doi: 10.1002/adom.201700434 |
[17] | CHENG H, WEI X Y, YU P, et al. Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces[J]. Applied Physics Letters, 2017, 110(17): 171903. doi: 10.1063/1.4982240 |
[18] |
BAI W, YANG P, WANG SH,
et al. Actively tunable metalens array based on patterned phase change materials[J].
Applied Sciences, 2019, 9(22): 4927.
doi:
|
[19] | YU P, LI J X, ZHANG SH, et al. Dynamic Janus metasurfaces in the visible spectral region[J]. Nano Letters, 2018, 18(7): 4584-4589. doi: 10.1021/acs.nanolett.8b01848 |
[20] | SHE A, ZHANG SH Y, SHIAN S, et al. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift[J]. Science Advances, 2018, 4(2): eaap9957. doi: 10.1126/sciadv.aap9957 |
[21] | KHORASANINEJAD M, CHEN W T, OH J, et al. Super-dispersive off-axis meta-lenses for compact high resolution spectroscopy[J]. Nano Letters, 2016, 16(6): 3732-3737. doi: 10.1021/acs.nanolett.6b01097 |
[22] | ZHU A Y, CHEN W T, KHORASANINEJAD M, et al. Ultra-compact visible chiral spectrometer with meta-lenses[J]. APL Photonics, 2017, 2(3): 036103. doi: 10.1063/1.4974259 |
[23] | ZHOU Y, CHEN R, MA Y G. Design of optical wavelength demultiplexer based on off-axis meta-lens[J]. Optics Letters, 2017, 42(22): 4716-4719. doi: 10.1364/OL.42.004716 |
[24] | ZHOU Y, CHEN R, MA Y G. Characteristic analysis of compact spectrometer based on off-axis meta-lens[J]. Applied Sciences, 2018, 8(3): 321. doi: 10.3390/app8030321 |
[25] | ZHU A Y, CHEN W T, SISLER J, et al. Compact aberration‐corrected spectrometers in the visible using dispersion‐tailored metasurfaces[J]. Advanced Optical Materials, 2019, 7(14): 1801144. doi: 10.1002/adom.201801144 |
[26] | 罗先刚. 亚波长电磁学: 上册[M]. 北京: 科学出版社, 2017: 208-214.LUO X G. Sub-Wavelength Electromagnetics:Vol. 1[M]. Beijing: Science Press, 2017: 208-214. (in Chinese) |
[27] | XIAO S Y, ZHAO F, WANG D Y, et al. Inverse design of a near-infrared metalens with an extended depth of focus based on double-process genetic algorithm optimization[J]. Optics Express, 2023, 31(5): 8668-8681. doi: 10.1364/OE.484471 |
[28] | 丁继飞, 刘文兵, 李含辉, 等. 大焦深离轴超透镜的设计与制作[J]. 物理学报,2021,70(19):197802. doi: 10.7498/aps.70.20202235 DING J F, LIU W B, LI H H, et al. Design and fabrication of off-axis meta-lens with large focal depth[J]. Acta Physica Sinica, 2021, 70(19): 197802. (in Chinese) doi: 10.7498/aps.70.20202235 |
[29] | BANERJI S, MEEM M, MAJUMDER A, et al. Imaging with flat optics: metalenses or diffractive lenses?[J]. Optica, 2019, 6(6): 805-810. doi: 10.1364/OPTICA.6.000805 |