[1] |
TAHERSIMA M H, KOJIMA K, KOIKE-AKINO T,
et al. Deep neural network inverse design of integrated photonic power splitters[J].
Scientific Reports, 2019, 9(1): 1368.
doi:
10.1038/s41598-018-37952-2
|
[2] |
YUAN H, WU J G, ZHANG J P,
et al. Non-volatile programmable ultra-small photonic arbitrary power splitters[J].
Nanomaterials, 2022, 12(4): 669.
doi:
10.3390/nano12040669
|
[3] |
XIE H C, LIU Y J, SUN W Z,
et al. Inversely designed 1× 4 power splitter with arbitrary ratios at 2-μm spectral band[J].
IEEE Photonics Journal, 2018, 10(4): 2700506.
|
[4] |
杨知虎, 傅佳慧, 张玉萍, 等. 基于深度学习的Fano共振超材料设计[J]. 中国光学(中英文),2023,16(4):816-823.YANG ZH H, FU J H, ZHANG Y P,
et al. Fano resonances design of metamaterials based on deep learning[J].
Chinese Optics, 2023, 16(4): 816-823. (in Chinese)
|
[5] |
YUAN H, WANG ZH H, ZHANG J P,
et al. Ultra-compact programmable arbitrary power splitter[J].
Proceedings of SPIE, 2021, 12062: 1206207.
|
[6] |
LIU Y J, WANG Z, LIU Y L,
et al. Ultra-compact mode-division multiplexed photonic integrated circuit for dual polarizations[J].
Journal of Lightwave Technology, 2021, 39(18): 5925-5932.
doi:
10.1109/JLT.2021.3092941
|
[7] |
MA H S, YANG J B, HUANG J,
et al. Inverse-designed single-mode and multi-mode nanophotonic waveguide switches based on hybrid silicon-Ge2Sb2Te5
platform[J].
Results in Physics, 2021, 26: 104384.
doi:
10.1016/j.rinp.2021.104384
|
[8] |
WANG Q, CHUMAK A V, PIRRO P. Inverse-design magnonic devices[J].
Nature Communications, 2021, 12(1): 2636.
doi:
10.1038/s41467-021-22897-4
|
[9] |
XIE H CH, LIU Y J, WANG Y H,
et al. An ultra-compact 3-dB power splitter for three modes based on pixelated meta-structure[J].
IEEE Photonics Technology Letters, 2020, 32(6): 341-344.
doi:
10.1109/LPT.2020.2975128
|
[10] |
LU L L Z, LIU D M, ZHOU F Y,
et al. Inverse-designed single-step-etched colorless 3 dB couplers based on RIE-lag-insensitive PhC-like subwavelength structures[J].
Optics Letters, 2016, 41(21): 5051-5054.
doi:
10.1364/OL.41.005051
|
[11] |
严德贤, 陈欣怡, 封覃银, 等. 二氧化钒辅助的可切换多功能超材料结构研究[J]. 中国光学(中英文),2023,16(3):514-522.
doi:
10.37188/CO.2022-0193
YAN D X, CHEN X Y, FENG Q Y,
et al. A vanadium dioxide-assisted switchable multifunctional metamaterial structure[J].
Chinese Optics, 2023, 16(3): 514-522. (in Chinese)
doi:
10.37188/CO.2022-0193
|
[12] |
张晓斌, 韩伟娜. 角度复用的光学加密超表面的超快激光嵌套加工方法研究[J]. 中国光学(中英文),2023,16(4):889-903.ZHANG X B, HAN W N. Ultrafast laser nested machining method for angle-multiplexed optically encrypted metasurface[J].
Chinese Optics, 2023, 16(4): 889-903. (in Chinese)
|
[13] |
PENG ZH, FENG J B, YUAN H,
et al. A non-volatile tunable ultra-compact silicon photonic logic gate[J].
Nanomaterials, 2022, 12(7): 1121.
doi:
10.3390/nano12071121
|
[14] |
MA H S, HUANG J, ZHANG K W,
et al. Inverse-designed arbitrary-input and ultra-compact 1× N power splitters based on high symmetric structure[J].
Scientific Reports, 2020, 10(1): 11757.
doi:
10.1038/s41598-020-68746-0
|
[15] |
ARUNACHALAM M, RAJU S. Power efficient space division multiplexing–wavelength division multiplexing system using multimode EDFA with elevated refractive index profile[J].
International Journal of Communication Systems, 2022, 35(6): e5065.
|
[16] |
FERNÁNDEZ DE CABO R, GONZÁLEZ-ANDRADE D, CHEBEN P,
et al. High-performance on-chip silicon beamsplitter based on subwavelength metamaterials for enhanced fabrication tolerance[J].
Nanomaterials, 2021, 11(5): 1304.
doi:
10.3390/nano11051304
|
[17] |
LU M J, DENG CH Y, ZHENG P F,
et al. Ultra-compact TE-mode-pass power splitter based on subwavelength gratings and hybrid plasmonic waveguides on SOI platform[J].
Optics Communications, 2021, 498: 127250.
doi:
10.1016/j.optcom.2021.127250
|
[18] |
MISCUGLIO M, MENG J W, YESILIURT O,
et
al. . Artificial synapse with mnemonic functionality using GSST-based photonic integrated memory[C].
Proceedings of 2020
International
Applied
Computational
Electromagnetics
Society
Symposium. IEEE, 2020: 1-3.
|
[19] |
ZHANG Y F, CHOU J B, LI J Y,
et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics[J].
Nature Communications, 2019, 10(1): 4279.
doi:
10.1038/s41467-019-12196-4
|