名称 | 功耗(W) | 工作模式 |
离子泵 | 100 | 长期 |
分子泵 | 100 | 长期 |
五自由度调整平台 | 12 | 短期 |
引用本文: | 任丽敏, 陈立恒, 孟旭, 王智. 365赌球最新网址[J]. 365赌球, 2023, 16(6): 1404-1413. doi: 10.37188/CO.2023-0022 |
Citation: | REN Li-min, CHEN Li-heng, MENG Xu, WANG Zhi. 365赌球官网平台[J]. Chinese Optics, 2023, 16(6): 1404-1413. doi: 10.37188/CO.2023-0022 |
为了满足惯性传感器地面弱力测量系统的超高温度稳定性要求,对整个系统进行了热设计。首先,介绍了惯性传感器地面弱力测量系统的结构、敏感结构传热路径和内部热源。其次,根据系统热控指标要求,提出了采用三级热控结构和比例积分微分(PID)控制算法相结合的高精度热控方式,减少温度噪声对惯性传感器探测灵敏度的影响。然后,采用UG/NX软件建立有限元模型,并进行了不同工况条件下的热分析计算,得到了惯性传感器地面弱力测量系统在时域上达到平衡后的温度变化值为(1.2~1.6) ×10−5 K。最后,将惯性传感器地面弱力测量系统在时域上的温度分布在频域上进行描述,得到惯性传感器敏感结构的温度稳定性结果。分析结果表明,在当前热控措施下,惯性传感器敏感结构的温度稳定性均优于10−4 K/Hz1/2,满足热控指标需求,热设计方案合理可行。
In order to meet the ultra-high temperature stability requirements of the ground weak force measurement system for inertial sensor, the thermal design of the whole system is carried out. Firstly, the structure of ground weak force measurement system of inertial sensor, heat transfer path of sensitive structure and internal heat source are introduced. Secondly, according to the index requirements of the thermal control of the system, a high-precision thermal control method combining the three-stage thermal control structure and Proportional Integral Differential (PID) control algorithm is proposed to reduce the influence of temperature noise on the detection sensitivity of the inertial sensor. Then, UG/NX software is used to establish the finite element model and carry out the thermal analysis calculation under different working conditions, and the temperature change value of the measurement system in the time domain after equilibrium is (1.2−1.6) ×10−5 K. Finally, the temperature distribution of the measurement system in the time domain is described in the frequency domain, and the temperature stability results of sensitive structure of the inertial sensor are obtained. The analysis results show that under the current thermal control measures, the temperature stability of the sensitive structure of the inertial sensor is better than 10−4 K/Hz1/2, meeting the requirements of thermal control indicators, and the thermal design scheme is reasonable and feasible.
图 1 惯性传感器地面弱力测量系统结构
Figure 1. Overall structure of the ground weak force measurement system for inertial sensor
图 2 惯性传感器地面弱力测量系统传热路径示意图
Figure 2. Schematic diagram of heat transfer path of the ground weak force measurement system for inertial sensor
图 3 惯性传感器地面弱力测量系统热控结构示意图
Figure 3. Schematic diagram of the thermal control structure of the ground weak force measurement system for inertial sensor
图 5 惯性传感器地面弱力测量系统有限元模型
Figure 5. Finite element model of the ground weak force measurement system for inertial sensor
图 6 实验室温度边界曲线。(a)高温工况;(b)低温工况
Figure 6. Laboratory temperature boundary curve. (a) High temperature condition; (b) low temperature condition
图 7 高温工况敏感结构温度变化曲线。(a)一级扭秤电极笼整体温度变化曲线;(b)一级扭秤电极笼24 h温度变化曲线
Figure 7. Temperature curves of the sensitive component under high temperature condition. (a) Overall temperature change curve and (b) the temperature change curve in 24 h of the electrode housing of primary torsion balance
图 8 高温工况一级扭秤电极笼温度稳定性曲线
Figure 8. Temperature stability curve of the electrode housing of primary torsion balance under high temperature condition
图 9 低温工况敏感结构温度曲线。(a) 一级扭秤电极笼整体温度变化曲线;(b) 一级扭秤电极笼24 h温度变化曲线
Figure 9. Temperature curves of the sensitive component under low temperature condition. (a) Overall temperature change curve and (b) the temperature change curve in 24 h of the electrode housing of primary torsion balance
图 10 低温工况一级扭秤电极笼温度稳定性曲线
Figure 10. Temperature stability curve of the sensitive component under low temperature condition
图 11 高温工况无主动热控条件下敏感结构温度曲线。(a) 一级扭秤电极笼整体温度变化曲线;(b) 一级扭秤电极笼24 h温度变化曲线
Figure 11. Temperature curve of sensitive component under high temperature condition without active thermal control. (a) Overall temperature change curve and (b) temperature change curve in 24 h of the electrode housing of primary torsion balance
图 12 高温工况无主动热控条件下一级扭秤电极笼温度稳定性曲线
Figure 12. Temperature stability curve of the sensitive component under high temperature condition without active thermal control
表 1 测量系统内各热源发热功耗
Table 1. Thermal power consumptions of heat sources in measuring system
名称 | 功耗(W) | 工作模式 |
离子泵 | 100 | 长期 |
分子泵 | 100 | 长期 |
五自由度调整平台 | 12 | 短期 |
表 2 热控结构及测量系统部分结构材料表
Table 2. List of structural materials of thermal control structure and measuring system
结构名称 | 村料名称 | 密度(kg/m3) | 导热系数(W/(m·K)) | 比热容(J/(kg·K)) |
隔热层内外层 | 铝蜂窝 | 50 | 0.88 | 921 |
隔热层夹层 | 聚苯乙烯 | 31 | 0.04 | 1 500 |
真空试验舱 | 不锈钢316L | 7 980 | 15.21 | 502 |
隔热垫 | 聚酰亚胺 | 1 450 | 0.3 | 1 090 |
光学元件 | 微晶玻璃 | 2 303 | 1.39 | 578 |
测量系统结构件 | 铝合金 | 2 702 | 150 | 907 |
[1] | CYRANOSKI D. Chinese gravitational-wave hunt hits crunch time[J]. Nature, 2016, 531(7593): 150-151. doi: 10.1038/531150a |
[2] | HU W R, WU Y L. The Taiji program in space for gravitational wave physics and the nature of gravity[J]. National Science Review, 2017, 4(5): 685-686. doi: 10.1093/nsr/nwx116 |
[3] | GONG Y G, LUO J, WANG B. Concepts and status of Chinese space gravitational wave detection projects[J]. Nature Astronomy, 2021, 5(9): 881-889. doi: 10.1038/s41550-021-01480-3 |
[4] | LUO J, CHEN L SH, DUAN H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33(3): 035010. doi: 10.1088/0264-9381/33/3/035010 |
[5] | LOBO A, NOFRARIAS M, RAMOS-CASTRO J, et al. On-ground tests of the LISA PathFinder thermal diagnostics system[J]. Classical and Quantum Gravity, 2006, 23(17): 5177-5193. doi: 10.1088/0264-9381/23/17/005 |
[6] | HIGUCHI S, SUN K X, DEBRA D B, et al. Design of a highly stable and uniform thermal test facility for MGRS development[J]. Journal of Physics: Conference Series, 2009, 154: 012037. doi: 10.1088/1742-6596/154/1/012037 |
[7] | LUO J, BAI Y ZH, CAI L, et al. The first round result from the TianQin-1 satellite[J]. Classical and Quantum Gravity, 2020, 37(18): 185013. doi: 10.1088/1361-6382/aba66a |
[8] | CHEN K, ZHANG X F, GUO T, et al. Key technologies analysis and design of ultra-clean & ultra-stable spacecraft for gravitational wave detection[J]. International Journal of Modern Physics A, 2021, 36(11-12): 2140021. |
[9] | 刘红, 张晓峰, 冯建朝, 等. 精密热控技术在太极一号卫星上的应用[J]. 空间科学学报, 2021, 41(2): 337-341.LIU H, ZHANG X F, FENG J CH, et al. Application of precision thermal control techniques in Taiji-1 satellite[J]. Chinese Journal of Space Science, 2021, 41(2): 337-341. (in Chinese) |
[10] | 王少鑫. 空间惯性传感器敏感结构构建及地面评价方法研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2020.WANG SH X. Research on the construction of the sensitive structure and ground evaluation method of space inertial sensor[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2020. (in Chinese) |
[11] | ARMANO M, AUDLEY H, AUGER G, et al. In-flight thermal experiments for LISA pathfinder: simulating temperature noise at the inertial sensors[J]. Journal of Physics: Conference Series, 2015, 610: 012023. doi: 10.1088/1742-6596/610/1/012023 |
[12] | BENDER P L. LISA sensitivity below 0.1 mHz[J]. Classical and Quantum Gravity, 2003, 20(10): S301-S310. doi: 10.1088/0264-9381/20/10/333 |
[13] | LIU J Y, SERGATSKOV D A, DUNCAN R V. Adaptive optimal PI controller for high-precision low-temperature experiments[C]. Proceedings of the 2005, American Control Conference, IEEE, 2005: 4220-4224. |
[14] | ZHANG J, ZHANG K Y. A particle swarm optimization approach for optimal design of PID controller for temperature control in HVAC[C]. Proceedings of 2011 Third International Conference on Measuring Technology and Mechatronics Automation, IEEE, 2011: 230-233. |
[15] |
GUO T T, WANG Q T, SHEN Q. A high accurate adaptive temperature control algorithm based on fuzzy reasoning and PID control[J].
Applied Mechanics and Materials, 2013, 331: 352-355.
doi:
|