[1] |
左超, 陈钱. 分辨率、超分辨率与空间带宽积拓展—从计算光学成像角度的一些思考[J]. 中国光学(中英文),2022,15(6):1105-1166.
ZUO CH, CHEN Q. Resolution, super-resolution and spatial bandwidth product expansion——some thoughts from the perspective of computational optical imaging[J].
Chinese Optics, 2022, 15(6): 1105-1166. (in Chinese)
|
[2] |
吴靖, 叶晓晶, 黄峰, 等. 基于深度学习的单帧图像超分辨率重建综述[J]. 电子学报,2022,50(9):2265-2294.WU J, YE X J, HUANG F,
et al. A review of single image super-resolution reconstruction based on deep learning[J].
Acta Electronica Sinica, 2022, 50(9): 2265-2294. (in Chinese)
|
[3] |
李洪安, 郑峭雪, 陶若霖, 等. 基于深度学习的图像超分辨率研究综述[J]. 图学学报,2023,44(1):1-15.LI H A, ZHENG Q X, TAO R L,
et al. Review of image super-resolution based on deep learning[J].
Journal of Graphics, 2023, 44(1): 1-15. (in Chinese)
|
[4] |
毕勇, 潘鸣奇, 张硕, 等. 三维点云数据超分辨率技术[J]. 中国光学(中英文),2022,15(2):210-223.BI Y, PAN M Q, ZHANG SH,
et al. Overview of 3D point cloud super-resolution technology[J].
Chinese Optics, 2022, 15(2): 210-223. (in Chinese)
|
[5] |
王溢琴, 董云云, 刘慧玲. 基于GoogLeNet和空间谱变换的高光谱图像超分辨率方法[J]. 光学技术,2022,48(1):93-101.
doi:
10.3321/j.issn.1002-1582.2022.1.gxjs202201015
WANG Y Q, DONG Y Y, LIU H L. Super-resolution method of hyperspectral image based on GoogLeNet and spatial spectrum transformation[J].
Optical Technique, 2022, 48(1): 93-101. (in Chinese)
doi:
10.3321/j.issn.1002-1582.2022.1.gxjs202201015
|
[6] |
曲海成, 王雅萱, 申磊. 多感受野特征与空谱注意力结合的高光谱图像超分辨率算法[J]. 自然资源遥感,2022,34(1):43-52.QU H CH, WANG Y X, SHEN L. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J].
Remote Sensing for Natural Resources, 2022, 34(1): 43-52. (in Chinese)
|
[7] |
柯舒婷, 陈明惠, 郑泽希, 等. 生成对抗网络对OCT视网膜图像的超分辨率重建[J]. 中国激光,2022,49(15):1507203.
KE SH T, CHEN M H, ZHENG Z X,
et al. Super-resolution reconstruction of optical coherence tomography retinal images by generating adversarial network[J].
Chinese Journal of Lasers, 2022, 49(15): 1507203. (in Chinese)
|
[8] |
左艳, 黄钢, 聂生东. 深度学习在医学影像智能处理中的应用与挑战[J]. 中国图象图形学报,2021,26(2):305-315.
doi:
10.11834/jig.190470
ZUO Y, HUANG G, NIE SH D. Application and challenges of deep learning in the intelligent processing of medical images[J].
Journal of Image and Graphics, 2021, 26(2): 305-315. (in Chinese)
doi:
10.11834/jig.190470
|
[9] |
王一宁, 赵青杉, 秦品乐, 等. 基于轻量密集神经网络的医学图像超分辨率重建算法[J]. 计算机应用,2022,42(8):2586-2592.WANG Y N, ZHAO Q SH, QIN P L,
et al. Super-resolution reconstruction algorithm of medical image based on lightweight dense neural network[J].
Journal of Computer Applications, 2022, 42(8): 2586-2592. (in Chinese)
|
[10] |
耿铭昆, 吴凡路, 王栋. 轻量化火星遥感影像超分辨率重建网络[J]. 光学 精密工程,2022,30(12):1487-1498.
doi:
10.37188/OPE.20223012.1487
GENG M K, WU F L, WANG, D. Lightweight Mars remote sensing image super-resolution reconstruction network[J].
Optics and Precision Engineering, 2022, 30(12): 1487-1498. (in Chinese)
doi:
10.37188/OPE.20223012.1487
|
[11] |
ZHANG J ZH, XU T F, LI J N,
et al. Single-image super resolution of remote sensing images with real-world degradation modeling[J].
Remote Sensing, 2022, 14(12): 2895.
doi:
10.3390/rs14122895
|
[12] |
倪若婷, 周莲英. 基于卷积神经网络的人脸图像超分辨率重建方法[J]. 计算机与数字工程,2022,50(1):195-200.
doi:
10.3969/j.issn.1672-9722.2022.01.037
NI R T, ZHOU L Y. Face image super-resolution reconstruction method based on convolutional neural network[J].
Computer
&Digital Engineering, 2022, 50(1): 195-200. (in Chinese)
doi:
10.3969/j.issn.1672-9722.2022.01.037
|
[13] |
卢峰, 周琳, 蔡小辉. 面向安防监控场景的低分辨率人脸识别算法研究[J]. 计算机应用研究,2021,38(4):1230-1234.
doi:
10.19734/j.issn.1001-3695.2020.01.0074
LU F, ZHOU L, CAI X H. Research on low-resolution face recognition algorithm for security surveillance scene[J].
Application Research of Computers, 2021, 38(4): 1230-1234. (in Chinese)
doi:
10.19734/j.issn.1001-3695.2020.01.0074
|
[14] |
KEYS R. Cubic convolution interpolation for digital image processing[J].
IEEE Transactions on Acoustics,Speech,and Signal Processing, 1981, 29(6): 1153-1160.
doi:
10.1109/TASSP.1981.1163711
|
[15] |
黄友文, 唐欣, 周斌. 结合双注意力和结构相似度量的图像超分辨率重建网络[J]. 液晶与显示,2022,37(3):367-375.
doi:
10.37188/CJLCD.2021-0178
HUANG Y W, TANG X, ZHOU B. Image super-resolution reconstruction network with dual attention and structural similarity measure[J].
Chinese Journal of Liquid Crystals and Displays, 2022, 37(3): 367-375. (in Chinese)
doi:
10.37188/CJLCD.2021-0178
|
[16] |
周乐, 徐龙, 刘孝艳, 等. 基于梯度感知的单幅图像超分辨[J]. 液晶与显示,2022,37(10):1334-1344.
doi:
10.37188/CJLCD.2022-0083
ZHOU L, XU L, LIU X Y,
et al. Gradient-aware based single image super-resolution[J].
Chinese Journal of Liquid Crystals and Displays, 2022, 37(10): 1334-1344. (in Chinese)
doi:
10.37188/CJLCD.2022-0083
|
[17] |
DONG CH, LOY C C, HE K M,
et al.. Learning a deep convolutional network for image super-resolution[C].
Proceedings of the 13th European Conference on Computer Vision, Springer, 2014: 184-199.
|
[18] |
DONG CH, LOY C C, TANG X O. Accelerating the super-resolution convolutional neural network[C].
Proceedings of the 14th European Conference on Computer Vision, Springer, 2016: 391-407.
|
[19] |
KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C].
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2016: 1646-1654.
|
[20] |
TAI Y, YANG J, LIU X M. Image super-resolution via deep recursive residual network[C].
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2017: 2790-2798.
|
[21] |
SHI W ZH, CABALLERO J, HUSZÁR F,
et al.. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C].
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2016: 1874-1883.
|
[22] |
ZHANG Y L, TIAN Y P, KONG Y,
et al. . Residual dense network for image super-resolution[C].
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2018: 2472-2481.
|
[23] |
LIM B, SON S, KIM H,
et al. . Enhanced deep residual networks for single image super-resolution[C].
2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), IEEE, 2017: 1132-1140.
|
[24] |
ZHANG Y L, LI K P, LI K,
et al. . Image super-resolution using very deep residual channel attention networks[C].
Proceedings of the 15th European Conference on Computer Vision, Springer, 2018: 294-310.
|
[25] |
LI J CH, FANG F M, MEI K F,
et al. . Multi-scale residual network for image super-resolution[C].
Proceedings of the 15th European Conference on Computer Vision, Springer, 2018: 527-542.
|
[26] |
ZHAO H Y, KONG X T, HE J W,
et al. . Efficient image super-resolution using pixel attention[C].
Proceedings of the European Conference on Computer Vision, Springer, 2020: 56-72.
|
[27] |
WANG Y. Edge-enhanced feature distillation network for efficient super-resolution[C].
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), IEEE, 2022: 776-784.
|
[28] |
LAI W SH, HUANG J B, AHUJA N,
et al.. Deep Laplacian pyramid networks for Fast and accurate super-resolution[C].
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2017: 5835-5843.
|
[29] |
SZEGEDY C, LIU W, JIA Y Q,
et al.. Going deeper with convolutions[C].
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2015: 1-9.
|
[30] |
HUI ZH, WANG X M, GAO X B. Fast and accurate single image super-resolution via information distillation network[C].
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2018: 723-731.
|