[1] |
KUMAR A, YUEH F Y, SINGH J P,
et al. Characterization of malignant tissue cells by laser-induced breakdown spectroscopy[J].
Applied Optics, 2004, 43(28): 5399-5403.
doi:
10.1364/AO.43.005399
|
[2] |
GALIOVÁ M, KAISER J, NOVOTNÝ K,
et al. Investigation of heavy-metal accumulation in selected plant samples using laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry[J].
Applied Physics A, 2008, 93(4): 917-922.
doi:
10.1007/s00339-008-4747-0
|
[3] |
BLEVINS L G, SHADDIX C R, SICKAFOOSE S M,
et al. Laser-induced breakdown spectroscopy at high temperatures in industrial boilers and furnaces[J].
Applied Optics, 2003, 42(30): 6107-6118.
doi:
10.1364/AO.42.006107
|
[4] |
NOLL R, BETTE H, BRYSCH A,
et al. Laser-induced breakdown spectrometry-applications for production control and quality assurance in the steel industry[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 2001, 56(6): 637-649.
doi:
10.1016/S0584-8547(01)00214-2
|
[5] |
NICOLAS G, MATEO M P, YAÑEZ A. The use of laser-induced plasma spectroscopy technique for the characterization of boiler tubes[J].
Applied Surface Science, 2007, 254(4): 873-878.
doi:
10.1016/j.apsusc.2007.08.069
|
[6] |
GRÖNLUND R, LUNDQVIST M, SVANBERG S. Remote imaging laser-induced breakdown spectroscopy and remote cultural heritage ablative cleaning[J].
Optics Letters, 2005, 30(21): 2882-2884.
doi:
10.1364/OL.30.002882
|
[7] |
POULI P, MELESSANAKI K, GIAKOUMAKI A,
et al. Measuring the thickness of protective coatings on historic metal objects using nanosecond and femtosecond laser induced breakdown spectroscopy depth profiling[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 2005, 60(7-8): 1163-1171.
doi:
10.1016/j.sab.2005.05.028
|
[8] |
HUSSAIN T, GONDAL M A. Detection of toxic metals in waste water from dairy products plant using laser induced breakdown spectroscopy[J].
Bulletin of Environmental Contamination and Toxicology, 2008, 80(6): 561-565.
doi:
10.1007/s00128-008-9418-5
|
[9] |
LÓPEZ-MORENO C, PALANCO S, LASERNA J J. Remote laser-induced plasma spectrometry for elemental analysis of samples of environmental interest[J].
Journal of Analytical Atomic Spectrometry, 2004, 19(11): 1479-1484.
doi:
10.1039/B408534E
|
[10] |
PACE D M D, D'ANGELO C A, BERTUCCELLI D,
et al. Analysis of heavy metals in liquids using laser induced breakdown spectroscopy by liquid-to-solid matrix conversion[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 2006, 61(8): 929-933.
doi:
10.1016/j.sab.2006.07.003
|
[11] |
BOGAERTS A, CHEN ZH Y, GIJBELS R,
et al. Laser ablation for analytical sampling: what can we learn from modeling[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 2003, 58(11): 1867-1893.
doi:
10.1016/j.sab.2003.08.004
|
[12] |
VASANTGADKAR N A, BHANDARKAR U V, JOSHI S S. A finite element model to predict the ablation depth in pulsed laser ablation[J].
Thin Solid Films, 2010, 519(4): 1421-1430.
doi:
10.1016/j.tsf.2010.09.016
|
[13] |
ZHANG Y, ZHANG D X, WU J J,
et al. A thermal model for nanosecond pulsed laser ablation of aluminum[J].
AIP Advances, 2017, 7(7): 075010.
doi:
10.1063/1.4995972
|
[14] |
WANG Y D, LIU CH, LI CH L. Evolution of ns pulsed laser induced shock wave on aluminum surface by numerical simulation[J].
Results in Physics, 2021, 22: 103920.
doi:
10.1016/j.rinp.2021.103920
|
[15] |
LIN X M, SUN H R, LIN J J. Comparison of SP-LIBS and DP-LIBS on metal and non-metal testing based on LIBS[J].
Proceedings of SPIE, 2017, 10457: 430-438.
|
[16] |
IKEDA Y, SORIANO J K, KAWAHARA N,
et al. Spatially and temporally resolved plasma formation on alumina target in microwave-enhanced laser-induced breakdown spectroscopy[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 2022, 197: 106533.
doi:
10.1016/j.sab.2022.106533
|
[17] |
MOHAMED W T Y. Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable Echelle spectrometer with ICCD camera[J].
Optics & Laser Technology, 2008, 40(1): 30-38.
|
[18] |
WERHEIT P, FRICKE-BEGEMANN C, GESING M,
et al. Fast single piece identification with a 3D scanning LIBS for aluminium cast and wrought alloys recycling[J].
Journal of Analytical Atomic Spectrometry, 2011, 26(11): 2166-2174.
doi:
10.1039/c1ja10096c
|
[19] |
SHAO X X, ZANG CH X, LIN X M. A method for detecting the stability of lasers based on LIBS plasma morphology[C].
2017 Chinese Automation Congress
(CAC), IEEE, 2017: 1715-1720.
|
[20] |
SAMEK O, KUROWSKI A, KITTEL S,
et al. Ultra-short laser pulse ablation using shear-force feedback: Femtosecond laser induced breakdown spectroscopy feasibility study[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 2005, 60(7-8): 1225-1229.
doi:
10.1016/j.sab.2005.05.032
|
[21] |
ELAND K L, STRATIS D N, LAI T SH,
et al. Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses[J].
Applied Spectroscopy, 2001, 55(3): 279-285.
doi:
10.1366/0003702011951894
|
[22] |
SEMEROK A, SALLÉ B, WAGNER J F,
et al. Femtosecond, picosecond, and nanosecond laser microablation: laser plasma and crater investigation[J].
Laser and Particle Beams, 2002, 20(1): 67-72.
doi:
10.1017/S0263034602201093
|
[23] |
BENEDETTI P A, CRISTOFORETTI G, LEGNAIOLI S,
et al. Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 2005, 60(11): 1392-1401.
doi:
10.1016/j.sab.2005.08.007
|
[24] |
LE DROGOFF B, CHAKER M, MARGOT J,
et al. Influence of the laser pulse duration on spectrochemical analysis of solids by laser-induced plasma spectroscopy[J].
Applied Spectroscopy, 2004, 58(1): 122-129.
doi:
10.1366/000370204322729559
|
[25] |
RIEGER G W, TASCHUK M, TSUI Y Y,
et al. Comparative study of laser-induced plasma emission from microjoule picosecond and nanosecond KrF-laser pulses[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 2003, 58(3): 497-510.
doi:
10.1016/S0584-8547(03)00014-4
|
[26] |
CAHOON E M, ALMIRALL J R. Wavelength dependence on the forensic analysis of glass by nanosecond 266 nm and 1064 nm laser induced breakdown spectroscopy[J].
Applied Optics, 2010, 49(13): C49-C57.
doi:
10.1364/AO.49.000C49
|
[27] |
WANG X SH, WAN S SH, HE Y G,
et al. Rapid determination of all element in MAPbI3 thin films using laser induced breakdown spectroscopy[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 2021, 178: 106123.
doi:
10.1016/j.sab.2021.106123
|
[28] |
ARAGÓN C, AGUILERA J A. Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 2008, 63(9): 893-916.
doi:
10.1016/j.sab.2008.05.010
|
[29] |
CREMERS D A, RADZIEMSKI L J.
Handbook of Laser-Induced Breakdown Spectroscopy[M]. Chichester: John Wiley & Sons, 2006.
|
[30] |
MIZIOLEK A W, PALLESCHI V, SCHECHTER I.
Laser-Induced Breakdown Spectroscopy
(LIBS):
Fundamentals and Applications[M]. Cambridge: Cambridge University Press, 2006.
|
[31] |
VON DER LINDE D, SOKOLOWSKI-TINTEN K, BIALKOWSKI J. Laser-solid interaction in the femtosecond time regime[J].
Applied Surface Science, 1997, 109-110: 1-10.
doi:
10.1016/S0169-4332(96)00611-3
|
[32] |
李业秋. 激光诱导击穿光谱增强特性及应用研究[D]. 长春: 吉林大学, 2019.LI Y Q. Laser induced breakdown spectroscopy enhancement characteristic and application research[D]. Changchun: Jilin University, 2019. (in Chinese)
|
[33] |
刘杨. 样品温度对激光诱导等离子体膨胀动力学的影响[D]. 长春: 吉林大学, 2017.LIU Y. The effect of sample temperature on the expansion dynamics of laser induced plasma[D]. Changchun: Jilin University, 2017. (in Chinese)
|
[34] |
GAUTIER C, FICHET P, MENUT D,
et al. Study of the double-pulse setup with an orthogonal beam geometry for laser-induced breakdown spectroscopy[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 2004, 59(7): 975-986.
doi:
10.1016/j.sab.2004.05.002
|
[35] |
DE GIACOMO A, DELL'AGLIO M, COLAO F,
et al. Double pulse laser produced plasma on metallic target in seawater: basic aspects and analytical approach[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 2004, 59(9): 1431-1438.
doi:
10.1016/j.sab.2004.07.002
|
[36] |
ST-ONGE L, DETALLE V, SABSABI M. Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd: YAG laser pulses[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 2002, 57(1): 121-135.
doi:
10.1016/S0584-8547(01)00358-5
|
[37] |
ST-ONGE L, SABSABI M, CIELO P. Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 1998, 53(3): 407-415.
doi:
10.1016/S0584-8547(98)00080-9
|
[38] |
STRATIS D N, ELAND K L, ANGEL S M. Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission[J].
Applied Spectroscopy, 2000, 54(9): 1270-1274.
doi:
10.1366/0003702001951174
|
[39] |
STRATIS D N, ELAND K L, ANGEL S M. Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma[J].
Applied Spectroscopy, 2001, 55(10): 1297-1303.
doi:
10.1366/0003702011953649
|
[40] |
STRATIS D N, ELAND K L, ANGEL S M. Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS[J].
Applied Spectroscopy, 2000, 54(12): 1719-1726.
doi:
10.1366/0003702001948871
|
[41] |
ANGEL S M, STRATIS D N, ELAND K L,
et al. LIBS using dual- and ultra-short laser pulses[J].
Fresenius' Journal of Analytical Chemistry, 2001, 369(3): 320-327.
|
[42] |
MUKHERJEE P, CHEN SH D, WITANACHCHI S. Effect of initial plasma geometry and temperature on dynamic plume expansion in dual-laser ablation[J].
Applied Physics Letters, 1999, 74(11): 1546-1548.
doi:
10.1063/1.123611
|
[43] |
AHMED R, BAIG M A. A comparative study of enhanced emission in double pulse laser induced breakdown spectroscopy[J].
Optics & Laser Technology, 2015, 65: 113-118.
|
[44] |
SEDOV L I.
Similarity and Dimensional Methods in Mechanics[M]. 10th ed. Boca Raton: CRC Press, 1993.
|
[45] |
CRISTOFORETTI G, LEGNAIOLI S, PARDINI L,
et al. Spectroscopic and shadowgraphic analysis of laser induced plasmas in the orthogonal double pulse pre-ablation configuration[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 2006, 61(3): 340-350.
doi:
10.1016/j.sab.2006.03.004
|
[46] |
VISKUP R, PRAHER B, LINSMEYER T,
et al. Influence of pulse-to-pulse delay for 532nm double-pulse laser-induced breakdown spectroscopy of technical polymers[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 2010, 65(11): 935-942.
doi:
10.1016/j.sab.2010.09.003
|
[47] |
BHATT C R, HARTZLER D, JAIN J C,
et al. Evaluation of analytical performance of double pulse laser-induced breakdown spectroscopy for the detection of rare earth elements[J].
Optics & Laser Technology, 2020, 126: 106110.
|
[48] |
NOLL R, SATTMANN R, STURM V,
et al. Space- and time-resolved dynamics of plasmas generated by laser double pulses interacting with metallic samples[J].
Journal of Analytical Atomic Spectrometry, 2004, 19(4): 419-428.
doi:
10.1039/b315718k
|
[49] |
SATTMANN R, STURM V, NOLL R. Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd: YAG laser pulses[J].
Journal of Physics D:Applied Physics, 1995, 28(10): 2181-2187.
doi:
10.1088/0022-3727/28/10/030
|
[50] |
CRISTOFORETTI G, LEGNAIOLI S, PALLESCHI V,
et al. Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 2004, 59(12): 1907-1917.
doi:
10.1016/j.sab.2004.09.003
|
[51] |
GAUTIER C, FICHET P, MENUT D,
et al. Main parameters influencing the double-pulse laser-induced breakdown spectroscopy in the collinear beam geometry[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 2005, 60(6): 792-804.
doi:
10.1016/j.sab.2005.05.006
|
[52] |
HEILBRUNNER H, HUBER N, WOLFMEIR H,
et al. Double-pulse laser-induced breakdown spectroscopy for trace element analysis in sintered iron oxide ceramics[J].
Applied Physics A, 2012, 106(1): 15-23.
doi:
10.1007/s00339-011-6669-5
|
[53] |
BABUSHOK V I, DELUCIA JR F C, GOTTFRIED J L,
et al. Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 2006, 61(9): 999-1014.
doi:
10.1016/j.sab.2006.09.003
|
[54] |
WANG Y, CHEN A M, WANG Q Y,
et al. Study of signal enhancement in collinear femtosecond-nanosecond double-pulse laser-induced breakdown spectroscopy[J].
Optics & Laser Technology, 2020, 122: 105887.
|
[55] |
CRISTOFORETTI G. Orthogonal Double-pulse versus Single-pulse laser ablation at different air pressures: a comparison of the mass removal mechanisms[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 2009, 64(1): 26-34.
doi:
10.1016/j.sab.2008.10.028
|
[56] |
PROCHAZKA D, POŘÍZKA P, NOVOTNÝ J,
et al. Triple-pulse LIBS: laser-induced breakdown spectroscopy signal enhancement by combination of pre-ablation and re-heating laser pulses[J].
Journal of Analytical Atomic Spectrometry, 2020, 35(2): 293-300.
doi:
10.1039/C9JA00323A
|
[57] |
CHOI I, MAO X L, GONZALEZ J J,
et al. Plasma property effects on spectral line broadening in double-pulse laser-induced breakdown spectroscopy[J].
Applied Physics A, 2013, 110(4): 785-792.
doi:
10.1007/s00339-012-7153-6
|
[58] |
RAI V N, YUEH F Y, SINGH J P. Time-dependent single and double pulse laser-induced breakdown spectroscopy of chromium in liquid[J].
Applied Optics, 2008, 47(31): G21-G29.
doi:
10.1364/AO.47.000G21
|
[59] |
ZENG X ZH, MAO S S, LIU CH Y,
et al. Plasma diagnostics during laser ablation in a cavity[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 2003, 58(5): 867-877.
doi:
10.1016/S0584-8547(03)00021-1
|
[60] |
DE GIACOMO A, DELL'AGLIO M, BRUNO D,
et al. Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 2008, 63(7): 805-816.
doi:
10.1016/j.sab.2008.05.002
|
[61] |
CHICHKOV B N, MOMMA C, NOLTE S,
et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J].
Applied physics A, 1996, 63(2): 109-115.
doi:
10.1007/BF01567637
|
[62] |
ELHASSAN A, GIAKOUMAKI A, ANGLOS D,
et al. Nanosecond and femtosecond Laser Induced Breakdown Spectroscopic analysis of bronze alloys[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 2008, 63(4): 504-511.
doi:
10.1016/j.sab.2008.02.003
|
[63] |
LE DROGOFF B, MARGOT J, VIDAL F,
et al. Influence of the laser pulse duration on laser-produced plasma properties[J].
Plasma Sources Science and Technology, 2004, 13(2): 223-230.
doi:
10.1088/0963-0252/13/2/005
|
[64] |
LE DROGOFF B, MARGOT J, CHAKER M,
et al. Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 2001, 56(6): 987-1002.
doi:
10.1016/S0584-8547(01)00187-2
|
[65] |
EMMERT L A, CHINNI R C, CREMERS D A,
et al. Comparative study of femtosecond and nanosecond laser-induced breakdown spectroscopy of depleted uranium[J].
Applied Optics, 2011, 50(3): 313-317.
doi:
10.1364/AO.50.000313
|
[66] |
MILOSHEVSKY A, HARILAL S S, MILOSHEVSKY G,
et al. Dynamics of plasma expansion and shockwave formation in femtosecond laser-ablated aluminum plumes in argon gas at atmospheric pressures[J].
Physics of Plasmas, 2014, 21(4): 043111.
doi:
10.1063/1.4873701
|
[67] |
HARILAL S S, MILOSHEVSKY G V, DIWAKAR P K,
et al. Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere[J].
Physics of Plasmas, 2012, 19(8): 083504.
doi:
10.1063/1.4745867
|
[68] |
RAO E N, MATHI P, KALAM S A,
et al. Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data[J].
Journal of Analytical Atomic Spectrometry, 2016, 31(3): 737-750.
doi:
10.1039/C5JA00445D
|
[69] |
KALAM S A, MURTHY N L, MATHI P,
et al. Correlation of molecular, atomic emissions with detonation parameters in femtosecond and nanosecond LIBS plasma of high energy materials[J].
Journal of Analytical Atomic Spectrometry, 2017, 32(8): 1535-1546.
doi:
10.1039/C7JA00136C
|
[70] |
SERRANO J, MOROS J, LASERNA J J. Molecular signatures in femtosecond laser-induced organic plasmas: comparison with nanosecond laser ablation[J].
Physical Chemistry Chemical Physics, 2016, 18(4): 2398-2408.
doi:
10.1039/C5CP06456B
|
[71] |
SULIYANTI M M, ISNAENI, PARDEDE M,
et al. Comparison of excitation mechanisms and the corresponding emission spectra in femto second and nano second laser-induced breakdown spectroscopy in reduced ambient air and their performances in surface analysis[J].
Journal of Laser Applications, 2020, 32(1): 012014.
doi:
10.2351/1.5119182
|
[72] |
SARKAR A, SHAH R V, ALAMELU D,
et al. Studies on the ns-IR-laser-induced plasma parameters in the vanadium Oxide[J].
Journal of Atomic and Molecular Physics, 2011, 2011: 504764.
|
[73] |
ABDELHAMID M, GRASSINI S, ANGELINI E,
et al. Effect of changing laser irradiance on the laser induced plasma parameters for Au/Cu layered target[J].
AIP Conference Proceedings, 2009, 1172(1): 70-75.
|
[74] |
LUO W F, ZHAO X X, SUN Q B,
et al. Characteristics of the aluminum alloy plasma produced by a 1064 nm Nd: YAG laser with different irradiances[J].
Pramana, 2010, 74(6): 945-959.
doi:
10.1007/s12043-010-0086-8
|
[75] |
VADILLO J M, ROMERO J M F, RODRÍGUEZ C,
et al. Effect of plasma shielding on laser ablation rate of pure metals at reduced pressure[J].
Surface and Interface Analysis, 1999, 27(11): 1009-1015.
doi:
10.1002/(SICI)1096-9918(199911)27:11<1009::AID-SIA670>3.0.CO;2-2
|
[76] |
HARILAL S S, BINDHU C V, ISSAC R C,
et al. Electron density and temperature measurements in a laser produced carbon plasma[J].
Journal of Applied Physics, 1997, 82(5): 2140-2146.
doi:
10.1063/1.366276
|
[77] |
CRISTOFORETTI G, LEGNAIOLI S, PALLESCHI V,
et al. Observation of different mass removal regimes during the laser ablation of an aluminium target in air[J].
Journal of Analytical Atomic Spectrometry, 2008, 23(11): 1518-1528.
doi:
10.1039/b800517f
|
[78] |
PIRRI A N. Theory for momentum transfer to a surface with a high-power laser[J].
Physics of Fluids, 1973, 16(9): 1435-1440.
doi:
10.1063/1.1694538
|
[79] |
AGUILERA J A, ARAGÓN C, PEÑALBA F. Plasma shielding effect in laser ablation of metallic samples and its influence on LIBS analysis[J].
Applied Surface Science, 1998, 127-129: 309-314.
doi:
10.1016/S0169-4332(97)00648-X
|
[80] |
CIRISAN M, JOUVARD J M, LAVISSE L,
et al. Laser plasma plume structure and dynamics in the ambient air: The early stage of expansion[J].
Journal of Applied Physics, 2011, 109(10): 103301.
doi:
10.1063/1.3581076
|
[81] |
ZENG Q D, GUO L B, LI X Y,
et al. Laser-induced breakdown spectroscopy using laser pulses delivered by optical fibers for analyzing Mn and Ti elements in pig iron[J].
Journal of Analytical Atomic Spectrometry, 2015, 30(2): 403-409.
doi:
10.1039/C4JA00462K
|
[82] |
HANIF M, SALIK M, BAIG M A. Quantitative studies of copper plasma using laser induced breakdown spectroscopy[J].
Optics and Lasers in Engineering, 2011, 49(12): 1456-1461.
doi:
10.1016/j.optlaseng.2011.06.013
|
[83] |
DITTRICH K, WENNRICH R. Laser vaporization in atomic spectrometry[J].
Analytical Spectroscopy Library, 1990, 4: 107-146.
|
[84] |
RUSSO R E, MAO X L, LIU H CH,
et al. Laser ablation in analytical chemistry-a review[J].
Talanta, 2002, 57(3): 425-451.
doi:
10.1016/S0039-9140(02)00053-X
|
[85] |
DUCREUX-ZAPPA M, MERMET J M. Analysis of glass by UV laser ablation inductively coupled plasma atomic emission spectrometry. Part 2. Analytical figures of merit[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 1996, 51(3): 333-341.
doi:
10.1016/0584-8547(95)01427-6
|
[86] |
DURRANT S F. Laser ablation inductively coupled plasma mass spectrometry: achievements, problems, prospects[J].
Journal of Analytical Atomic Spectrometry, 1999, 14(9): 1385-1403.
doi:
10.1039/a901765h
|
[87] |
LAZIC V, COLAO F, FANTONI R,
et al. Laser-induced plasma spectroscopy: principles, methods and applications[J].
AIP Conference Proceedings, 2006, 876(1): 309-316.
|
[88] |
CABALÍN L M, LASERNA J J. Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 1998, 53(5): 723-730.
doi:
10.1016/S0584-8547(98)00107-4
|
[89] |
CABALÍN L, ROMERO D, GARCÍA C C,
et al. Time-resolved laser-induced plasma spectrometry for determination of minor elements in steelmaking process samples[J].
Analytical and Bioanalytical Chemistry, 2002, 372(2): 352-359.
doi:
10.1007/s00216-001-1121-x
|
[90] |
MENUT D, FICHET P, LACOUR J L,
et al. Micro-laser-induced breakdown spectroscopy technique: a powerful method for performing quantitative surface mapping on conductive and nonconductive samples[J].
Applied Optics, 2003, 42(30): 6063-6071.
doi:
10.1364/AO.42.006063
|
[91] |
MAO X L, CIOCAN A C, RUSSO R E. Preferential vaporization during laser ablation inductively coupled plasma atomic emission spectroscopy[J].
Applied Spectroscopy, 1998, 52(7): 913-918.
doi:
10.1366/0003702981944706
|
[92] |
FANTONI R, CANEVE L, COLAO F,
et al.
Laser induced breakdown spectroscopy (LIBS)[M]//BARTOLO B, FORTE O. Advances in Spectroscopy for Lasers and Sensing. Dordrecht: Springer, 2006: 229-254.
|
[93] |
LEIS F, SDORRA W, KO J B,
et al. Basic investigations for laser microanalysis: I. Optical emission spectrometry of laser-produced sample plumes[J].
Microchimica Acta, 1989, 98(4): 185-199.
|
[94] |
SDORRA W, NIEMAX K. Basic investigations for laser microanalysis: III. Application of different buffer gases for laser-produced sample plumes[J].
Microchimica Acta, 1992, 107(3): 319-327.
|
[95] |
LEE Y I, SONG K, CHA H K,
et al. Influence of atmosphere and irradiation wavelength on copper plasma emission induced by excimer and Q-switched Nd: YAG laser ablation[J].
Applied Spectroscopy, 1997, 51(7): 959-964.
doi:
10.1366/0003702971941610
|
[96] |
LEE Y I, THIEM T L, KIM G H,
et al. Interaction of an excimer-laser beam with metals. Part III: The effect of a controlled atmosphere in laser-ablated plasma emission[J].
Applied Spectroscopy, 1992, 46(11): 1597-1604.
doi:
10.1366/0003702924926871
|
[97] |
AGUILERA J A, ARAGÓN C. A comparison of the temperatures and electron densities of laser-produced plasmas obtained in air, argon, and helium at atmospheric pressure[J].
Applied Physics A, 1999, 69(1): S475-S478.
|
[98] |
BASHIR S, FARID N, MAHMOOD K,
et al. Influence of ambient gas and its pressure on the laser-induced breakdown spectroscopy and the surface morphology of laser-ablated Cd[J].
Applied Physics A, 2012, 107(1): 203-212.
doi:
10.1007/s00339-011-6730-4
|
[99] |
MARGETIC V, PAKULEV A, STOCKHAUS A,
et al. A Comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 2000, 55(11): 1771-1785.
doi:
10.1016/S0584-8547(00)00275-5
|
[100] |
HERMANN J, GERHARD C, AXENTE E,
et al. Comparative investigation of laser ablation plumes in air and argon by analysis of spectral line shapes: Insights on calibration-free laser-induced breakdown spectroscopy[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 2014, 100: 189-196.
doi:
10.1016/j.sab.2014.08.014
|
[101] |
LEE Y I, SONG K, CHA H K,
et al. Influence of atmosphere and irradiation wavelength on copper plasma emission induced by excimer and Q-switched Nd: YAG laser ablation[J].
Applied Spectroscopy, 1997, 51(7): 959-964.
(查阅网上资料, 本条文献与第95条文献重复, 请确认)
.
doi:
10.1366/0003702971941610
LEE Y I, SONG K, CHA H K, et al. Influence of atmosphere and irradiation wavelength on copper plasma emission induced by excimer and Q-switched Nd: YAG laser ablation[J]. Applied Spectroscopy,
1997,
51(7):
959-964.
(查阅网上资料, 本条文献与第95条文献重复, 请确认).
doi:
10.1366/0003702971941610
|
[102] |
GRAVEL J F Y, BOUDREAU D. Study by focused shadowgraphy of the effect of laser irradiance on laser-induced plasma formation and ablation rate in various gases[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 2009, 64(1): 56-66.
doi:
10.1016/j.sab.2008.10.037
|
[103] |
AGUILERA J A, ARAGÓN C, MADURGA V,
et al. Study of matrix effects in laser induced breakdown spectroscopy on metallic samples using plasma characterization by emission spectroscopy[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 2009, 64(10): 993-998.
doi:
10.1016/j.sab.2009.07.007
|
[104] |
YAO SH CH, ZHAO J B, XU J L,
et al. Optimizing the binder percentage to reduce matrix effects for the LIBS analysis of carbon in coal[J].
Journal of Analytical Atomic Spectrometry, 2017, 32(4): 766-772.
doi:
10.1039/C6JA00458J
|
[105] |
VISKUP R, PRAHER B, STEHRER T,
et al. Plasma plume photography and spectroscopy of Fe-Oxide materials[J].
Applied Surface Science, 2009, 255(10): 5215-5219.
doi:
10.1016/j.apsusc.2008.08.092
|
[106] |
ANZANO J M, VILLORIA M A, RUÍZ-MEDINA A,
et al. Laser-induced breakdown spectroscopy for quantitative spectrochemical analysis of geological materials: effects of the matrix and simultaneous determination[J].
Analytica Chimica Acta, 2006, 575(2): 230-235.
doi:
10.1016/j.aca.2006.05.077
|
[107] |
LABUTIN T A, POPOV A M, LEDNEV V N,
et al. Correlation between properties of a solid sample and laser-induced plasma parameters[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 2009, 64(10): 938-949.
doi:
10.1016/j.sab.2009.07.033
|
[108] |
SHAO J F, GUO J, WANG Q Y,
et al. Influence of target temperature on femtosecond laser-ablated brass plasma spectroscopy[J].
Plasma Science and Technology, 2020, 22(7): 074001.
doi:
10.1088/2058-6272/ab7901
|
[109] |
GUO J, WANG T F, SHAO J F,
et al. Emission enhancement of laser-induced breakdown spectroscopy by increasing sample temperature combined with spatial confinement[J].
Journal of Analytical Atomic Spectrometry, 2018, 33(12): 2116-2123.
doi:
10.1039/C8JA00246K
|
[110] |
SABSABI M, CIELO P. Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization[J].
Applied Spectroscopy, 1995, 49(4): 499-507.
doi:
10.1366/0003702953964408
|
[111] |
ZHANG D, CHEN A M, WANG X W,
et al. Enhancement mechanism of femtosecond double-pulse laser-induced Cu plasma spectroscopy[J].
Optics & Laser Technology, 2017, 96: 117-122.
|
[112] |
KUZUYA M, MATSUMOTO H, TAKECHI H,
et al. Effect of laser energy and atmosphere on the emission characteristics of laser-induced plasmas[J].
Applied Spectroscopy, 1993, 47(10): 1659-1664.
doi:
10.1366/0003702934334804
|
[113] |
UJIHARA K. Reflectivity of metals at high temperatures[J].
Journal of Applied Physics, 1972, 43(5): 2376-2383.
doi:
10.1063/1.1661506
|
[114] |
LIU Y, TONG Y, WANG Y,
et al. Influence of sample temperature on the expansion dynamics of laser-induced germanium plasma[J].
Plasma Science and Technology, 2017, 19(12): 125501.
doi:
10.1088/2058-6272/aa8acc
|
[115] |
ESCHLBÖCK-FUCHS S, HASLINGER E S, HINTERREITER M J,
et al. Influence of sample temperature on the expansion dynamics and the optical emission of laser-induced plasma[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 2013, 87: 36-42.
doi:
10.1016/j.sab.2013.05.023
|
[116] |
ZHANG D, CHEN A M, WANG Q Y,
et al. Influence of target temperature on H alpha line of laser-induced silicon plasma in air[J].
Physics of Plasmas, 2018, 25(8): 083305.
doi:
10.1063/1.5040895
|
[117] |
李捷, 陆继东, 林兆祥, 等. 激光诱导击穿固体样品中金属元素光谱的实验研究[J]. 中国激光,2009,36(11):2882-2887.
doi:
10.3788/CJL20093611.2882
LI J, LU J D, LIN ZH X,
et al. Experimental analysis of spectra of metallic elements in solid samples by laser-induced breakdown spectroscopy[J].
Chinese Journal of Lasers, 2009, 36(11): 2882-2887. (in Chinese)
doi:
10.3788/CJL20093611.2882
|
[118] |
CHOI S J, YOH J J. Laser-induced plasma peculiarity at low pressures from the elemental lifetime perspective[J].
Optics Express, 2011, 19(23): 23097-23103.
doi:
10.1364/OE.19.023097
|
[119] |
FU Y T, HOU Z Y, LI T Q,
et al. Investigation of intrinsic origins of the signal uncertainty for laser-induced breakdown spectroscopy[J].
Spectrochimica Acta Part B:Atomic Spectroscopy, 2019, 155: 67-78.
doi:
10.1016/j.sab.2019.03.007
|
[120] |
FU Y T, GU W L, HOU Z Y,
et al. Mechanism of signal uncertainty generation for laser-induced breakdown spectroscopy[J].
Frontiers of Physics, 2020, 16(2): 22502.
|
[121] |
王阳恩. 延迟时间对灰岩中镍元素激光诱导击穿光谱强度的影响[J]. 冶金分析,2013,33(11):1-5.
doi:
10.13228/j.issn.1000-7571.2013.11.001
WANG Y E. Influence of delay time on laser-induced breakdown spectroscopy intensity of nickel in limestone[J].
Metallurgical Analysis, 2013, 33(11): 1-5. (in Chinese)
doi:
10.13228/j.issn.1000-7571.2013.11.001
|
[122] |
郑培超, 刘红弟, 王金梅, 等. 激光诱导铝合金等离子体的时间演化过程研究[J]. 中国激光,2014,41(10):1015001.
doi:
10.3788/CJL201441.1015001
ZHENG P CH, LIU H D, WANG J M,
et al. Study on time evolution process of laser-induced aluminum alloy plasma[J].
Chinese Journal of Lasers, 2014, 41(10): 1015001. (in Chinese)
doi:
10.3788/CJL201441.1015001
|
[123] |
SONG K, CHA H, LEE J,
et al. Investigation of the line-broadening mechanism for laser-induced copper plasma by time-resolved laser-induced breakdown spectroscopy[J].
Microchemical Journal, 1999, 63(1): 53-60.
doi:
10.1006/mchj.1999.1767
|