[1] |
ASHKIN A. Trapping of atoms by resonance radiation pressure[J].
Physical Review Letters, 1978, 40(12): 729-732.
doi:
10.1103/PhysRevLett.40.729
|
[2] |
TOKONAMI S. External-field-induced assembly for biological analytical chemistry[J].
Analytical Sciences, 2021, 37(3): 395-396.
doi:
10.2116/analsci.highlights2103
|
[3] |
蔡宸, 张韫宏. 光镊技术在气溶胶物理化学表征中的应用[J]. 中国光学,2017,10(5):641-655.
doi:
10.3788/co.20171005.0641
CAI CH, ZHANG Y H. Application of optical tweezers technology in physical chemistry characterization of aerosol[J].
Chinese Optics, 2017, 10(5): 641-655. (in Chinese)
doi:
10.3788/co.20171005.0641
|
[4] |
STOEV I D, SEELBINDER B, ERBEN E,
et al. Highly sensitive force measurements in an optically generated, harmonic hydrodynamic trap[J].
eLight, 2021, 1(1): 1-9.
|
[5] |
FILIPPI J, DI GIUSEPPE D, CASTI P,
et al. Exploiting spectral information in Opto-Electronic Tweezers for cell classification and drug response evaluation[J].
Sensors and Actuators B:Chemical, 2022, 368: 132200.
doi:
10.1016/j.snb.2022.132200
|
[6] |
GAYATHRI R, KAR S, NAGAI M,
et al. Single-cell patterning: a new frontier in bioengineering[J].
Materials Today Chemistry, 2022, 26: 101021.
doi:
10.1016/j.mtchem.2022.101021
|
[7] |
李银妹, 王浩威, 龚雷. 光镊技术在生命科学研究中的应用现状[J]. 生物学杂志,2019,36(3):1-8.LI Y M, WANG H W, GONG L. Current applied researches of optical tweezers in biology[J].
Journal of Biology, 2019, 36(3): 1-8. (in Chinese)
|
[8] |
LIU Y, DING H, LI J,
et al. Light-driven single-cell rotational adhesion frequency assay[J].
elight, 2022, 2(1): 1-11.
|
[9] |
LIU ZH H, SHA CH Y, ZHANG Y,
et al. Improved photopolymerization for fabricating fiber optical tweezers[J].
Optics Communications, 2022, 508: 127801.
doi:
10.1016/j.optcom.2021.127801
|
[10] |
LIU CH, LIU ZH H. Design of micro-optical tweezers[J].
Proceedings of SPIE, 2011, 8202: 820212.
doi:
10.1117/12.906996
|
[11] |
LIAO C, XIONG C, ZHAO J,
et al. Design and realization of 3D printed fiber-tip microcantilever probes applied to hydrogen sensing[J].
Light: Advanced Manufacturing, 2022, 3(1): 3-13.
|
[12] |
SUN X, LEI Z, ZHONG H,
et al. A quasi-3D Fano resonance cavity on optical fiber end-facet for high signal-to-noise ratio dip-and-read surface plasmon sensing[J].
Light: Advanced Manufacturing, 2022, 3(4): 665-675.
|
[13] |
ZHANG Y, LI Y, ZHANG Y X,
et al. HACF-based optical tweezers available for living cells manipulating and sterile transporting[J].
Optics Communications, 2018, 427: 563-566.
doi:
10.1016/j.optcom.2018.07.022
|
[14] |
LIU ZH H, WANG L, ZHANG Y,
et al. Optical funnel for living cells trap[J].
Optics Communications, 2019, 431: 196-198.
doi:
10.1016/j.optcom.2018.09.023
|
[15] |
ANASTASIADI G, LEONARD M, PATERSON L,
et al. Fabrication and characterization of machined multi-core fiber tweezers for single cell manipulation[J].
Optics Express, 2018, 26(3): 3557-3567.
doi:
10.1364/OE.26.003557
|
[16] |
LEE S R, KIM J, LEE S,
et al. All-silica fiber Bessel-like beam generator and its applications in longitudinal optical trapping and transport of multiple dielectric particles[J].
Optics Express, 2010, 18(24): 25299-25305.
doi:
10.1364/OE.18.025299
|
[17] |
TANG X Y, ZHANG Y, ZHANG Y X,
et al. All-fiber active tractor beam generator and its application[J].
Journal of Lightwave Technology, 2020, 38(6): 1420-1426.
doi:
10.1109/JLT.2019.2953335
|
[18] |
ZHANG Y, LIU ZH H, YANG J,
et al. Four-core optical fiber micro-hand[J].
Journal of Lightwave Technology, 2012, 30(10): 1487-1491.
doi:
10.1109/JLT.2012.2187772
|
[19] |
FOOLADI E, SADEGHI M, ADELPOUR Z,
et al. Performance improvement of a plasmonic tapered twin–core fiber optical tweezers[J].
Optik, 2021, 245: 167656.
doi:
10.1016/j.ijleo.2021.167656
|
[20] |
HOU G H, LIU ZH H. The simulation research of multi-core optical fiber near-field optical tweezers[J].
Proceedings of SPIE, 2011, 8202: 82020K.
|
[21] |
LIU ZH H, GUO CH K, YANG J,
et al. Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application[J].
Optics Express, 2006, 14(25): 12510-12516.
doi:
10.1364/OE.14.012510
|
[22] |
刘福禄, 张钰民, 孟凡勇, 等. 基于端面镀膜和基底增敏的级联法布里-珀罗光纤温度传感器[J]. 仪器仪表学报,2020,41(11):105-111.LIU F L, ZHANG Y M, MENG F Y,
et al. Fiber temperature sensor based on the cascaded Fabry-Perot with end face coating and substrate sensitization[J].
Chinese Journal of Scientific Instrument, 2020, 41(11): 105-111. (in Chinese)
|
[23] |
贺健康, 张立超, 才玺坤, 等. 离子束溅射制备GdF3光学薄膜沉积速率分布特性[J]. 中国光学,2016,9(3):356-363.
doi:
10.3788/co.20160903.0356
HE J K, ZHANG L CH, CAI X K,
et al. Deposition rate distribution of GdF3
optical coating prepared by ion beam sputtering[J].
Chinese Optics, 2016, 9(3): 356-363. (in Chinese)
doi:
10.3788/co.20160903.0356
|
[24] |
宁哲达, 王一晴, 陈天天, 等. 磁控溅射沉积银薄膜/涂层的研究进展[J]. 稀有金属材料与工程,2022,51(12):4773-4782.NING ZH D, WANG Y Q, CHEN T T,
et al. Research progress of silver films/coatings deposited by magnetron sputtering[J].
Rare Metal Materials and Engineering, 2022, 51(12): 4773-4782. (in Chinese)
|
[25] |
ZHANG X T, YUAN T T, YUAN Y G,
et al. Twin-core fiber end polish technique for particle trapping[J].
Proceedings of SPIE, 2015, 9655: 96551V.
|
[26] |
YUAN L B, LIU ZH H, YANG J,
et al. Two-beam optical tweezers built by a two-core fiber[J].
Proceedings of SPIE, 2008, 7004: 70040R.
doi:
10.1117/12.785205
|
[27] |
LIU ZH H, ZHANG Y X, ZHANG Y,
et al.. All-fiber self-accelerating Bessel-like beam for optical trapping application[C].
Optics and the Brain 2015, Optica Publishing Group, 2015: JT3A. 2.
|
[28] |
XIE S, PENNETTA R, RUSSELL P S J. Self-alignment of glass fiber nanospike by optomechanical back-action in hollow-core photonic crystal fiber[J].
Optica, 2016, 3(3): 277-282.
doi:
10.1364/OPTICA.3.000277
|
[29] |
GHARAATI A R, ELAHI P, JAFARI M. Calculation of temperature distribution in eccentric multi core diode pumped fiber lasers by green function method[J].
Acta Physica Polonica A, 2009, 116(4): 566-569.
doi:
10.12693/APhysPolA.116.566
|
[30] |
孙林, 刘宁, 蔡轶, 等. 多芯光纤通信海缆的能效理论及系统参数优化[J]. 光学学报,2022,42(15):1506005.
doi:
10.3788/AOS202242.1506005
SUN L, LIU N, CAI Y,
et al. Power efficiency theory and system parameter optimization for multicore fiber-based submarine cables[J].
Acta Optica Sinica, 2022, 42(15): 1506005. (in Chinese)
doi:
10.3788/AOS202242.1506005
|
[31] |
MORANT M, LLORENTE R. Performance analysis of carrier-aggregated multiantenna 4 × 4 MIMO LTE-A fronthaul by spatial multiplexing on multicore fiber[J].
Journal of Lightwave Technology, 2018, 36(2): 594-600.
doi:
10.1109/JLT.2017.2786582
|
[32] |
MACHO A, MORANT M, LLORENTE R. Experimental evaluation of nonlinear crosstalk in multi-core fiber[J].
Optics Express, 2015, 23(14): 18712-18720.
doi:
10.1364/OE.23.018712
|
[33] |
刘建霞, 薛丽, 陈宫傣, 等. 偏心光纤倏逝场传感灵敏度的研究[J]. 激光与光电子学进展,2016,53(7):071301.LIU J X, XUE L, CHEN G D,
et al. Sensitivity of evanescent field sensors based on eccentric core optical fiber[J].
Laser
&Optoelectronics Progress, 2016, 53(7): 071301. (in Chinese)
|
[34] |
张世达, 耿乙迦. 碲化铋倏逝场锁模器件的超快光纤激光器[J]. 中国光学,2022,15(3):433-442.
doi:
10.37188/CO.2021-0216
ZHANG SH D, GENG Y J. Ultrafast fiber laser based on bismuth telluride evanescent field mode-locked device[J].
Chinese Optics, 2022, 15(3): 433-442. (in Chinese)
doi:
10.37188/CO.2021-0216
|
[35] |
LIU J X, YUAN L B. Evanescent field characteristics of eccentric core optical fiber for distributed sensing[J].
Journal of the Optical Society of America A, 2014, 31(3): 475-479.
doi:
10.1364/JOSAA.31.000475
|
[36] |
BOULOUMIS T D, NIC CHORMAIC S. From far-field to near-field micro- and nanoparticle optical trapping[J].
Applied Sciences, 2020, 10(4): 1375.
doi:
10.3390/app10041375
|
[37] |
LEITZ K H, QUENTIN U, ALEXEEV I,
et al. Process investigations of optical trap assisted direct-write microsphere near-field nanostructuring[J].
CIRP Annals, 2012, 61(1): 207-210.
doi:
10.1016/j.cirp.2012.03.047
|
[38] |
苑立波. 纤端光操纵: 光镊·光手·光枪[J]. 光学与光电技术,2020,18(2):1-6.YUAN L B. Specialty optical fibers for micro particle manipulation: optical tweezers, hands and gun[J].
Optics
&Optoelectronic Technology, 2020, 18(2): 1-6. (in Chinese)
|
[39] |
马光辉, 于贺, 刘宇乾, 等. 金属纳米表面等离子激元的共振辐射增强研究[J]. 激光与光电子学进展,2018,55(4):042601.MA G H, YU H, LIU Y Q,
et al. Resonance radiation enhancement of metal nanometer surface plasmons[J].
Laser
&Optoelectronics Progress, 2018, 55(4): 042601. (in Chinese)
|
[40] |
LV S J, DU Y P, WU F T,
et al. Review on LSPR assisted photocatalysis: effects of physical fields and opportunities in multifield decoupling[J].
Nanoscale Advances, 2022, 4(12): 2608-2631.
doi:
10.1039/D2NA00140C
|
[41] |
TANDON B, AGRAWAL A, HEO S,
et al. Competition between depletion effects and coupling in the Plasmon modulation of doped metal oxide nanocrystals[J].
Nano Letters, 2019, 19(3): 2012-2019.
doi:
10.1021/acs.nanolett.9b00079
|
[42] |
PELLAS V, HU D, MAZOUZI Y,
et al. Gold nanorods for LSPR biosensing: synthesis, coating by silica, and bioanalytical applications[J].
Biosensors, 2020, 10(10): 146.
doi:
10.3390/bios10100146
|
[43] |
LIBERALE C, MINZIONI P, CRISTIANI I. All optical 3-D trapping through a single-fiber tweezer[C].
The European Conference on Lasers and Electro-Optics, Optica Publishing Group, 2007: CL2_2.
|
[44] |
申泽, 成煜, 邓洪昌, 等. 鸟喙形环形芯光纤光镊粒子捕获受力分析[J]. 光学学报,2021,41(18):1808001.
doi:
10.3788/AOS202141.1808001
SHEN Z, CHENG Y, DENG H CH,
et al. Analysis of trapping force of beak-shaped optical tweezers with annular core fibers for particles[J].
Acta Optica Sinica, 2021, 41(18): 1808001. (in Chinese)
doi:
10.3788/AOS202141.1808001
|
[45] |
LIU ZH H, WANG L, ZHANG Y,
et al. Particle size measurement using a fibre-trap-based interference approach[J].
Optics Communications, 2020, 471: 125839.
doi:
10.1016/j.optcom.2020.125839
|
[46] |
张乃倩, 方群. 基于微流控系统的单细胞代谢物分析技术的研究进展[J]. 分析化学,2021,49(11):1779-1791.ZHANG N Q, FANG Q. Progress of single-cell metabolite analysis technology based on microfluidic system[J].
Chinese Journal of Analytical Chemistry, 2021, 49(11): 1779-1791. (in Chinese)
|
[47] |
李钢敏, 李致远, 李正冉, 等. 基于表面等离子体共振的高灵敏度光纤微流控芯片[J]. 中国激光,2021,48(1):0106002.
doi:
10.3788/CJL202148.0106002
LI G M, LI ZH Y, LI ZH R,
et al. High-sensitivity optical-fiber microfluidic chip based on surface Plasmon resonance[J].
Chinese Journal of Lasers, 2021, 48(1): 0106002. (in Chinese)
doi:
10.3788/CJL202148.0106002
|
[48] |
ZHAI J, YI SH H, JIA Y W,
et al. Cell-based drug screening on microfluidics[J].
TrAC Trends in Analytical Chemistry, 2019, 117: 231-241.
doi:
10.1016/j.trac.2019.05.018
|
[49] |
王志乐, 王著元, 宗慎飞, 等. 微流控SERS芯片及其生物传感应用[J]. 中国光学,2018,11(3):513-530.
doi:
10.3788/co.20181103.0513
WANG ZH L, WANG ZH Y, ZONG SH F,
et al. Microfluidic SERS chip and its biosensing applications[J].
Chinese Optics, 2018, 11(3): 513-530. (in Chinese)
doi:
10.3788/co.20181103.0513
|
[50] |
FALLAHI H, ZHANG J, PHAN H P,
et al. Flexible microfluidics: fundamentals, recent developments, and applications[J].
Micromachines, 2019, 10(12): 830.
doi:
10.3390/mi10120830
|
[51] |
KRITZINGER A, FORBES A, FORBES P B C. Optical trapping and fluorescence control with vectorial structured light[J].
Scientific Reports, 2022, 12(1): 17690.
doi:
10.1038/s41598-022-21224-1
|
[52] |
PAN X J, WU J Y, LI ZH L,
et al. Laguerre-Gaussian mode purity of Gaussian vortex beams[J].
Optik, 2021, 230: 166320.
doi:
10.1016/j.ijleo.2021.166320
|
[53] |
KHONINA S N, STRILETZ A S, KOVALEV A A,
et al. Propagation of laser vortex beams in a parabolic optical fiber[J].
Proceedings of SPIE, 2010, 7523: 75230B.
|
[54] |
WANG J H, CHEN R SH, YAO J N,
et al. Random distributed feedback fiber laser generating cylindrical vector beams[J].
Physical Review Applied, 2019, 11(4): 044051.
doi:
10.1103/PhysRevApplied.11.044051
|
[55] |
LIU ZH H, WANG L, LIANG P B,
et al. Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment[J].
Optics Letters, 2013, 38(14): 2617-2620.
doi:
10.1364/OL.38.002617
|
[56] |
WU H, JIANG CH L, REN A N,
et al. Single-fiber optical tweezers for particle trapping and axial reciprocating motion using dual wavelength and dual mode[J].
Optics Communications, 2022, 517: 128333.
doi:
10.1016/j.optcom.2022.128333
|
[57] |
ZHANG Y, ZHAO L, CHEN Y H,
et al. Single optical tweezers based on elliptical core fiber[J].
Optics Communications, 2016, 365: 103-107.
doi:
10.1016/j.optcom.2015.11.076
|