留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
陈毅, 孙俊杰, 于晶华, 姚志焕, 张逸文, 于德洋, 何洋, 张阔, 潘其坤, 陈飞. 365彩票官网官方入口[J]. 365赌球, 2023, 16(5): 996-1009. doi: 10.37188/CO.2023-0009
引用本文: 陈毅, 孙俊杰, 于晶华, 姚志焕, 张逸文, 于德洋, 何洋, 张阔, 潘其坤, 陈飞. 365彩票官网官方入口[J]. 365赌球, 2023, 16(5): 996-1009. doi: 10.37188/CO.2023-0009
CHEN Yi, SUN Jun-jie, YU Jing-hua, YAO Zhi-huan, ZHANG Yi-wen, YU De-yang, HE Yang, ZHANG Kuo, PAN Qi-kun, CHEN Fei. 365彩票官网网页版[J]. Chinese Optics, 2023, 16(5): 996-1009. doi: 10.37188/CO.2023-0009
Citation: CHEN Yi, SUN Jun-jie, YU Jing-hua, YAO Zhi-huan, ZHANG Yi-wen, YU De-yang, HE Yang, ZHANG Kuo, PAN Qi-kun, CHEN Fei. 365彩票官网网页版[J]. Chinese Optics, 2023, 16(5): 996-1009. doi: 10.37188/CO.2023-0009

365彩票官网官方入口

doi: 10.37188/CO.2023-0009
基金项目:长春光机所创新重大项目(No. E10302Y3M0);吉林省青年成长科技计划项目(No. 20220508041RC)
详细信息
    作者简介:

    陈 毅(1991—),男,新疆昌吉人,博士,工程师,2020年于哈尔滨工业大学获得博士学位,主要从事碟片激光技术与长波红外激光方面的研究。E-mail:[email protected]

    孙俊杰(1994—),女,吉林长春人,硕士,助理研究员,2017年于国防科技大学获得硕士学位,主要从事新型激光技术及应用研究。E-mail:[email protected]

    陈 飞(1982—),男,河南南阳人,博士,研究员,2011年于哈尔滨工业大学获得博士学位,主要从事新型激光技术及应用研究。E-mail:[email protected]

  • 中图分类号:TN248

365彩票官网网页版

Funds:Supported by Innovate Major Project, CIOMP (No. E10302Y3M0); Jilin Province Youth Growth Science and Technology Project (No. 20220508041RC)
More Information
  • 摘要:

    为了明晰碟片多通放大器的腔体设计方法,本文对不同类型的碟片多通放大器做归纳与总结,共归纳出4f中继成像、谐振腔设计/光学傅立叶变换、近准直光束传输与其他共4种设计理念的多通放大器。介绍了每种放大器的设计方法并详尽列举了研究现状。通过对比4种类型的碟片多通放大器,发现不同种类的多通放大器各有优缺点。4f中继成像需要真空环境以避免焦点处的气体电离,因此机械装置与调试难度较大;谐振腔设计/光学傅立叶变换概念多通放大器的镜片处存在较小光斑,因此较适用于较低能量的多通放大器;近准直光束传输方法由于不需要真空环境,具备很大的发展潜力,但需要精准控制激光运转状态下的碟片面形,难度也较大。因此,从激光器设计角度来看,需要对碟片多通放大器继续进行优化设计,从而同时实现使用场景的多元化与输出能量的可持续拓展。

  • 图 1 4f中继传输系统。带有两个透镜的中继成像可再现碟片上激光束的相位和强度分布[ 6 ]

    Figure 1. 4f relay transmission system. Relay imaging with two lenses to reproduce the phase and intensity distribution of the laser beam on the thin clisk[ 6 ]

    图 2 不同半径、不同波前曲率的光束在4f系统内传输情况(碟片光焦度为0,光焦度指焦距的倒数)

    Figure 2. Graph of beams with different spot radii and wavefront curvatures propagating in a 4f system (The diopter of thin-disk is 0, and the diopter refers to the reciprocal of the focal length)

    图 3 不同碟片晶体光焦度时光束在5个串联4f系统内的传输情况

    Figure 3. Transmission curves of beams within 5 tandem 4f systems when the diopter of the thin-disk is different

    图 4 (a)包含一个透镜和两个棱镜对的4f系统光路;(b) 通过透镜的光束位置[ 6 ]

    Figure 4. (a) Optical path of a 4f system consisting of one lens and two prism pairs; (b) position of the beam passing through the lens[ 6 ]

    图 5 包含抛物面镜与棱镜的碟片多通放大器[ 6 ]

    Figure 5. Thin-disk multi-pass amplifier with parabolic mirrors and prisms[ 6 ]

    图 6 基于4f中继成像的12通碟片放大器[ 7 ]

    Figure 6. 12-pass thin-disk amplifier based on 4f relay imaging[ 7 ]

    图 7 基于4f中继成像的14通碟片放大器[ 10 ]

    Figure 7. 14-pass thin-disk amplifier based on 4f relay imaging

    图 8 基于双碟片4f系统的18通放大器[ 8 , 11 ]

    Figure 8. 18-pass amplifier based on a dual thin-disk 4f system[ 8 , 11 ]

    图 9 基于4f中继成像系统的14通放大器。(a)单碟片双通放大器俯视图;(b)非折叠的光路传输示意图;(c)碟片多通放大器实物图[ 12 ]

    Figure 9. 14 pass amplifier based on 4f relay imaging system. (a) Top view of the single thin-disk dual-pass amplifier; (b) schematic diagram of non-folded optical path transmission; (c) physical diagram of the thin-disk multi-pass amplifier[ 12 ]

    图 10 带有补偿镜、基于中继成像的碟片多通放大器俯视图[ 14 ]

    Figure 10. Top view of the thin-disk multi-pass amplifier with compensation mirror based on relay imaging[ 14 ]

    图 11 改进中继成像光路图(使用一个补偿镜代替抛物面镜与补偿镜)[ 16 ]

    Figure 11. Improved relay imaging optical path diagram (Using a compensating mirror instead of a parabolic mirror with a compensating mirror)[ 16 ]

    图 12 基于4f中继成像+万花筒系统的碟片12通放大器[ 20 ]

    Figure 12. Thin-disk 12-pass amplifier based on a 4f relay imaging + kaleidoscope system[ 20 ]

    图 13 基于双4f中继成像系统的碟片64通放大器[ 13 ]

    Figure 13. Thin-disk 64 pass amplifier based on a dual 4f relay imaging system[ 13 ]

    图 14 24通放大器的光路示意图。(a)光路连续通过1-disk-2-K2-3-disk-4-K1-5-disk-6-K2-7。其中:1~7代表图14(b)中的镜片编号;K1、K2分别表示凹面反射镜K1与凸面反射镜K2;K1—K2定义了光学稳定腔。(b)反射镜阵列编号与其他元件的侧面投影位置

    Figure 14. Schematic diagram of the optical path of the 24-pass amplifier. (a) The optical path passes continuously through 1-disk-2-K2-3-disk-4-K1-5-disk-6-K2-7, where 1-7 represents the mirror numbers in Figure 14 (b), K1 and K2 represent the concave mirror K1 and convex mirror K2, respectively. K1-K2 defines the optical stable cavity. (b) The reflector array number and the lateral projection position of other elements

    图 15 16通4f放大器与光学傅立叶传输多通放大器的(a)输出光斑与(b)波前曲率倒数随碟片晶体光焦度的变化。红色虚线代表4f多通放大器,蓝色实线代表光学傅立叶传输多通放大器,灰色实线代表理想情况的光学傅立叶传输多通放大器[ 24 ]

    Figure 15. Variation in (a) output spot and (b) wavefront curvature inverse with a diopter of thin-disk for the 16-pass 4f amplifier and optical Fourier transmission multi-pass amplifier. The red dashed line represents the 4f multi-pass amplifier, the blue solid line represents the optical Fourier transmission multi-pass amplifier, and the gray solid line represents the optical Fourier transmission multi-pass amplifier in ideal circumstances[ 24 ]

    图 16 基于光学傅立叶传输的8通放大器的光束传播。(黑线代表碟片晶体光焦度为0,红线和蓝线代表碟片晶体光焦度分别为±1/(40f)的光束传播,f为4f系统的焦距)[ 24 ]

    Figure 16. Beam propagation of an 8-pass amplifier based on optical Fourier transmission. (The black line represents the diopter of the thin-disk at 0. The red and blue lines represent the diopter of the thin-disk are ±1/(40f), and f is the focal length of the 4f system)[ 24 ]

    图 17 实际使用的光学傅立叶变换8通放大器的光束传播缩短了传输距离。(黑线代表碟片晶体光焦度为0,红线和蓝线代表碟片晶体光焦度=±1/(40f)对应的光束传播,f为4f系统的焦距)[ 24 ]

    Figure 17. Beam propagation of a practical optical Fourier transform 8-pass amplifier that shortens the transmission distance. (The black line represents the diopter of the thin-disk at 0. The red and blue lines represent the diopter of the thin-disk = ±1/(40f), and f is the focal length of the 4f system)[ 24 ]

    图 18 20通放大器的(a)俯视[ 25 ]、(b)立体光路图与(c)镜片阵列实物图[ 25 ]

    Figure 18. (a) Top view[ 25 ], (b) stereo optical path diagrams, and (c) physical view of the lens array[ 25 ] of the 20-pass amplifier

    图 19 (a)垂直后向反射镜实物图[ 26 ],(b)垂直后向反射镜与平面反射镜的光路对比

    Figure 19. (a) Physical drawing of the vertical retro-reflector[ 26 ]; (b) comparison of the optical path between the vertical retro-reflector and the plane reflector

    图 20 配备主动稳定系统的傅立叶传输多通放大器[ 26 ]

    Figure 20. Fourier transmission multi-pass amplifier with an active stabilization system[ 26 ]

    图 21 测量的3个八通放大器的小信号增益与碟片偏角ϕ的关系。红色线代表常规傅立叶传输多通放大器,蓝色符号取自相同放大器但M2镜片被垂直后向反射镜代替,绿色符号代表配备主动稳定系统的傅立叶传输多通放大器[ 26 ]

    Figure 21. The relationship between the small signal gain of three eight-pass amplifiers and the measured deflection angle of the thin-disk. The red symbols represent conventional Fourier transmission multi-pass amplifiers, the blue symbols are taken from the same amplifiers but with the M2 lens being replaced by a vertical rearward reflector, and the green symbols represent the Fourier transmission multi-pass amplifiers equipped with an active stabilization system[ 26 ]

    图 22 近准直光束传输多通放大器光路图[ 27 ]

    Figure 22. Optical path diagram of the near collimated beam propagation multi-pass amplifier[ 27 ]

    图 23 皮秒多通放大器的(a)整体光路布局、(b)多通池光路图与(c)镜片单阵列实物图[ 40 ]

    Figure 23. (a) Overall optical path layout of picosecond multi-pass amplifier, (b) optical path of a multipass cell and (c) picture of a single array of mirrors[ 40 ]

    图 24 皮秒多通放大器光路中的光斑半径分布[ 40 ]

    Figure 24. Spot radius distribution in the optical path of the picosecond multi-pass amplifier[ 40 ]

    图 25 720 mJ皮秒激光器整体光路图[ 41 ]

    Figure 25. Overall optical path of the 720 mJ picosecond laser[ 41 ]

    图 26 碟片大口径环形放大器光路图[ 43 ]

    Figure 26. Optical path diagram of the thin-disk large-aperture ring amplifier[ 43 ]

    图 27 部分已报告的多通放大器输出激光参数。(a)脉冲重频vs脉冲能量,(b)脉冲宽度vs峰值功率,(c)平均输出功率vs峰值功率

    Figure 27. The output laser parameters of some reported multi-pass amplifiers. (a) Pulse repetition frequency vs pulse energy, (b) pulse width vs peak power, and (c) average output power vs peak power

    表  1 ${\bf{4}}{\boldsymbol{f}} $ 系统传输前后的光束参数

    Table  1. Beam parameters before and after 4f system transmission

    光束1 光束2 光束3
    入射前
    参数
    光斑半径0.12 mm 光斑半径1.5 mm 光斑半径3 mm
    波前曲率半径1 m 波前曲率半径1 m 波前曲率半径106 m
    传输后
    参数
    光斑半径0.12 mm 光斑半径1.5 mm 光斑半径3 mm
    波前曲率半径1 m 波前曲率半径1 m 波前曲率半径106 m
    下载: 导出CSV

    表  2 4种碟片多通放大器的优缺点

    Table  2. Advantages and disadvantages of four types of thin-disk multi-pass amplifiers

    方案名称 优点 缺点
    4f中继成像 任何热透镜焦距下,均能复现光斑尺寸,光路设计简单 光束发散角随热透镜焦距变化剧烈,光束焦点处容易电离空气,需要真空环境运行或令焦点位于真空管内
    4f中继成像——低温制冷 单次增益高、热光性能优异,光路设计简单 需要液氮等低温制冷,同时需要真空环境
    谐振腔设计/光学傅立叶变换 抗热透镜变化性能优于4f中继成像 镜片上存在较小尺寸光斑,对镜片损伤阈值要求高;未进行皮秒脉冲放大实验,停留在理论阶段
    近准直光束传输 可在空气环境运行,无空气电离 需要精心设计的碟片光焦度
    其他
    下载: 导出CSV
  • [1] 张世达, 耿乙迦. 碲化铋倏逝场锁模器件的超快光纤激光器[J]. 中国光学,2022,15(3):433-442. doi: 10.37188/CO.2021-0216

    ZHANG SH D, GENG Y J. Ultrafast fiber laser based on bismuth telluride evanescent field mode-locked device[J]. Chinese Optics, 2022, 15(3): 433-442. (in Chinese) doi: 10.37188/CO.2021-0216
    [2] 徐飞, 潘其坤, 陈飞, 等. 中红外Fe2+: ZnSe激光器研究进展[J]. 中国光学,2021,14(3):458-469. doi: 10.37188/CO.2020-0180

    XU F, PAN Q K, CHEN F, et al. Development progress of Fe2+: ZnSe lasers[J]. Chinese Optics, 2021, 14(3): 458-469. (in Chinese) doi: 10.37188/CO.2020-0180
    [3] 牛娜, 窦微, 浦双双, 等. 蓝光二极管抽运Pr: YLF腔内倍频连续深紫外激光器[J]. 中国光学,2021,14(6):1395-1399. doi: 10.37188/CO.2021-0077

    NIU N, DOU W, PU SH SH, et al. Continuous deep ultraviolet laser by intracavity frequency doubling of blue laser diode pumped Pr: YLF[J]. Chinese Optics, 2021, 14(6): 1395-1399. (in Chinese) doi: 10.37188/CO.2021-0077
    [4] NUBBEMEYER T, KAUMANNS M, UEFFING M, et al. 1kW, 200 mJ picosecond thin-disk laser system[J]. Optics Letters, 2017, 42(7): 1381-1384. doi: 10.1364/OL.42.001381
    [5] KRÖTZ P, WANDT C, GREBING C, et al. . Towards 2 kW, 20 kHz ultrafast thin-disk based regenerative amplifiers[C]. Advanced Solid State Lasers 2019, Optica Publishing Group, 2019: ATh1A. 8.
    [6] MÜLLER D, ERHARD S, RONSIN O, et al. . Thin disk multi-pass amplifier[C]. Advanced Solid-State Photonics 2003, Optica Publishing Group, 2003: 278.
    [7] LOESER M, SIEBOLD M, ROESER F, et al. . High energy CPA-free picosecond Yb: YAG amplifier[C]. Advanced Solid-State Photonics 2012, Optica Publishing Group, 2012: AM4A. 16.
    [8] FRIEBEL F, PELLEGRINA A, PAPADOPOULOS D N, et al. . 57-mJ 20-Hz multipass laser amplifier based on Yb: CaF2 crystals[C]. Advanced Solid State Lasers 2013, Optica Publishing Group, 2013: ATu3A. 21.
    [9] ZAPATA L E, LIN H, CALENDRON A L, et al. Cryogenic Yb: YAG composite-thin-disk for high energy and average power amplifiers[J]. Optics Letters, 2015, 40(11): 2610-2613. doi: 10.1364/OL.40.002610
    [10] SIEBOLD M, LOESER M, ROESER F, et al. High-energy, ceramic-disk Yb: LuAG laser amplifier[J]. Optics Express, 2012, 20(20): 21992-22000. doi: 10.1364/OE.20.021992
    [11] FRIEBEL F, PELLEGRINA A, PAPADOPOULOS D N, et al. Diode-pumped Yb: CaF2 multipass amplifier producing 50 mJ with dynamic analysis for high repetition rate operation[J]. Applied Physics B, 2014, 117(2): 597-603. doi: 10.1007/s00340-014-5872-4
    [12] ZWILICH M, EWERS B. Coherent beam combining of multipass thin-disk lasers with active phase control[J]. OSA Continuum, 2020, 3(11): 3176-3186. doi: 10.1364/OSAC.404658
    [13] PEREVEZENTSEV E, KUZNETSOV I, MUKHIN I, et al. Matrix multi-pass scheme disk amplifier[J]. Applied Optics, 2017, 56(30): 8471-8476. doi: 10.1364/AO.56.008471
    [14] SPEISER J. Thin disk lasers: history and prospects[J]. Proceedings of SPIE, 2016, 9893: 98930L.
    [15] OCHI Y, NAGASHIMA K, MARUYAMA M, et al. . Effective multi-pass amplification system for Yb: YAG thin-disk laser[C]. Laser Applications Conference 2017, Optica Publishing Group, 2017: JTh2A. 31.
    [16] KÖRNER J, HEIN J, KALUZA M C. Compact aberration-free relay-imaging multi-pass layouts for high-energy laser amplifiers[J]. Applied Sciences, 2016, 6(11): 353. doi: 10.3390/app6110353
    [17] SMRŽ M, MUŽÍK J, NOVÁK O, et al. Progress in kW-class picosecond thin-disk lasers development at the HiLASE[J]. Proceedings of SPIE, 2016, 9726: 972617.
    [18] FAN T Y, RIPIN D J, AGGARWAL R L, et al. Cryogenic Yb3+-doped solid-state lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 448-459. doi: 10.1109/JSTQE.2007.896602
    [19] KOERNER J, VORHOLT C, LIEBETRAU H, et al. Measurement of temperature-dependent absorption and emission spectra of Yb: YAG, Yb: LuAG, and Yb: CaF2 between 20 °C and 200 °C and predictions on their influence on laser performance[J]. Journal of the Optical Society of America B, 2012, 29(9): 2493-2502. doi: 10.1364/JOSAB.29.002493
    [20] CALENDRON A L, ZAPATA L E, ÇANKAYA H, et al. . Optimized temperature/bandwidth operation of cryogenic Yb: YAG composite thin-disk laser amplifier[C]. High Intensity Lasers and High Field Phenomena 2014, Optica Publishing Group, 2014: JW2A. 10.
    [21] ANTOGNINI A, SCHUHMANN K, AMARO F D, et al. Thin-disk Yb: YAG oscillator-amplifier laser, ASE, and effective Yb: YAG lifetime[J]. IEEE Journal of Quantum Electronics, 2009, 45(8): 993-1005. doi: 10.1109/JQE.2009.2014881
    [22] SCHUHMANN K, ANTOGNINI A, KIRCH K, et al. . Thin-disk laser for the measurement of the radii of the proton and the alpha-particle[C]. Advanced Solid State Lasers 2013, Optica Publishing Group, 2013: ATu3A. 46.
    [23] TÜMMLER J, JUNG R, STIEL H, et al. High-repetition-rate chirped-pulse-amplification thin-disk laser system with joule-level pulse energy[J]. Optics Letters, 2009, 34(9): 1378-1380. doi: 10.1364/OL.34.001378
    [24] SCHUHMANN K, KIRCH K, MARSZALEK M, et al. Multipass amplifiers with self-compensation of the thermal lens[J]. Applied Optics, 2018, 57(35): 10323-10333. doi: 10.1364/AO.57.010323
    [25] ZEYEN M, ANTOGNINI A, KIRCH K, et al. Compact 20-pass thin-disk amplifier insensitive to thermal lensing[J]. Proceedings of SPIE, 2019, 10896: 108960X.
    [26] SCHUHMANN K, KIRCH K, KNECHT A, et al. Passive alignment stability and auto-alignment of multipass amplifiers based on Fourier transforms[J]. Applied Optics, 2019, 58(11): 2904-2912. doi: 10.1364/AO.58.002904
    [27] NEGEL J P, VOSS A, AHMED M A, et al. 1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses[J]. Optics Letters, 2013, 38(24): 5442-5445. doi: 10.1364/OL.38.005442
    [28] SCHUHMANN K, AHMED M A, ANTOGNINI A, et al. Thin-disk laser multi-pass amplifier[J]. Proceedings of SPIE, 2015, 9342: 93420U.
    [29] SCHUHMANN K, KIRCH K, NEZ F, et al. Thin-disk laser scaling limit due to thermal lens induced misalignment instability[J]. Applied Optics, 2016, 55(32): 9022-9032. doi: 10.1364/AO.55.009022
    [30] SCHUHMANN K, KIRCH K, ANTOGNINI A. Multi-pass resonator design for energy scaling of mode-locked thin-disk lasers[J]. Proceedings of SPIE, 2017, 10082: 100820J.
    [31] SCHUHMANN K. The thin-disk laser for the 2S – 2P measurement in muonic helium[D]. Zurich: ETH Zurich, 2017.
    [32] NEGEL J P, VOSS A, AHMED M A, et al. . Thin-disk multipass amplifier for ultrashort pulses with an output power of 264 W[C]. Advanced Solid State Lasers 2013, Optica Publishing Group, 2013: AF3A. 9.
    [33] NEGEL J P, VOSS A, AHMED M A, et al. . 1.3 kW average output power Yb: YAG thin-disk multipass amplifier for multi-mJ picosecond laser pulses[C]. CLEO: Science and Innovations 2014, Optica Publishing Group, 2014: STu1O. 2.
    [34] NEGEL J P, LOESCHER A, VOSS A, et al. Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm[J]. Optics Express, 2015, 23(16): 21064-21077. doi: 10.1364/OE.23.021064
    [35] LOESCHER A, NEGEL J P, GRAF T, et al. Radially polarized emission with 635 W of average power and 2.1 mJ of pulse energy generated by an ultrafast thin-disk multipass amplifier[J]. Optics Letters, 2015, 40(24): 5758-5761. doi: 10.1364/OL.40.005758
    [36] NEGEL J P, LOESCHER A, BAUER D, et al. . Second generation thin-disk multipass amplifier delivering picosecond pulses with 2 kW of average output power[C]. Advanced Solid State Lasers 2016, Optica Publishing Group, 2016: ATu4A. 5.
    [37] NEGEL J P, LOESCHER A, DANNECKER B, et al. Thin-disk multipass amplifier for fs pulses delivering 400 W of average and 2.0 GW of peak power for linear polarization as well as 235 W and 1.2 GW for radial polarization[J]. Applied Physics B, 2017, 123(5): 156. doi: 10.1007/s00340-017-6739-2
    [38] RÖCKER C, LOESCHER A, BIENERT F, et al. Ultrafast green thin-disk laser exceeding 1.4  kW of average power[J]. Optics Letters, 2020, 45(19): 5522-5525. doi: 10.1364/OL.403781
    [39] RÖCKER C, LOESCHER A, NEGEL J P, et al. Direct amplification of sub-300fs pulses in a versatile thin-disk multipass amplifier[J]. Optics Communications, 2020, 460: 125159. doi: 10.1016/j.optcom.2019.125159
    [40] DIETZ T, JENNE M, BAUER D, et al. Ultrafast thin-disk multi-pass amplifier system providing 1.9 kW of average output power and pulse energies in the 10 mJ range at 1 ps of pulse duration for glass-cleaving applications[J]. Optics Express, 2020, 28(8): 11415-11423. doi: 10.1364/OE.383926
    [41] HERKOMMER C, KRÖTZ P, JUNG R, et al. Ultrafast thin-disk multipass amplifier with 720 mJ operating at kilohertz repetition rate for applications in atmospheric research[J]. Optics Express, 2020, 28(20): 30164-30173. doi: 10.1364/OE.404185
    [42] KEPPLER S, WANDT C, HORNUNG M, et al. Multipass amplifiers of POLARIS[J]. Proceedings of SPIE, 2013, 8780: 87800I. doi: 10.1117/12.2019248
    [43] JUNG R, TÜMMLER J, NUBBEMEYER T, et al. . Two-channel thin-disk laser for high pulse energy[C]. Advanced Solid State Lasers 2015, Optica Publishing Group, 2015: AW3A. 7.
  • 加载中
图(27) /表(2)
计量
  • 文章访问数: 358
  • HTML全文浏览量: 203
  • PDF下载量: 228
  • 被引次数: 0
365赌球注册网站
  • 收稿日期: 2023-01-05
  • 修回日期: 2023-02-05
  • 网络出版日期: 2023-04-18

目录

    /

    返回文章
    返回