光束1 | 光束2 | 光束3 | |
入射前 参数 |
光斑半径0.12 mm | 光斑半径1.5 mm | 光斑半径3 mm |
波前曲率半径1 m | 波前曲率半径1 m | 波前曲率半径106 m | |
传输后 参数 |
光斑半径0.12 mm | 光斑半径1.5 mm | 光斑半径3 mm |
波前曲率半径1 m | 波前曲率半径1 m | 波前曲率半径106 m |
引用本文: | 陈毅, 孙俊杰, 于晶华, 姚志焕, 张逸文, 于德洋, 何洋, 张阔, 潘其坤, 陈飞. 365彩票官网官方入口[J]. 365赌球, 2023, 16(5): 996-1009. doi: 10.37188/CO.2023-0009 |
Citation: | CHEN Yi, SUN Jun-jie, YU Jing-hua, YAO Zhi-huan, ZHANG Yi-wen, YU De-yang, HE Yang, ZHANG Kuo, PAN Qi-kun, CHEN Fei. 365彩票官网网页版[J]. Chinese Optics, 2023, 16(5): 996-1009. doi: 10.37188/CO.2023-0009 |
为了明晰碟片多通放大器的腔体设计方法,本文对不同类型的碟片多通放大器做归纳与总结,共归纳出4
In order to clarify the cavity design methods of thin-disk multi-pass amplifiers, we summarize the different types of thin-disk multi-pass amplifiers and concludes that there are four fundamental design concepts: (1) 4
图 2 不同半径、不同波前曲率的光束在4f系统内传输情况(碟片光焦度为0,光焦度指焦距的倒数)
Figure 2. Graph of beams with different spot radii and wavefront curvatures propagating in a 4f system (The diopter of thin-disk is 0, and the diopter refers to the reciprocal of the focal length)
图 3 不同碟片晶体光焦度时光束在5个串联4f系统内的传输情况
Figure 3. Transmission curves of beams within 5 tandem 4f systems when the diopter of the thin-disk is different
图 7 基于4f中继成像的14通碟片放大器[ 10 ]
Figure 7. 14-pass thin-disk amplifier based on 4f relay imaging
图 9 基于4f中继成像系统的14通放大器。(a)单碟片双通放大器俯视图;(b)非折叠的光路传输示意图;(c)碟片多通放大器实物图[ 12 ]
Figure 9. 14 pass amplifier based on 4f relay imaging system. (a) Top view of the single thin-disk dual-pass amplifier; (b) schematic diagram of non-folded optical path transmission; (c) physical diagram of the thin-disk multi-pass amplifier[ 12 ]
图 14 24通放大器的光路示意图。(a)光路连续通过1-disk-2-K2-3-disk-4-K1-5-disk-6-K2-7。其中:1~7代表图14(b)中的镜片编号;K1、K2分别表示凹面反射镜K1与凸面反射镜K2;K1—K2定义了光学稳定腔。(b)反射镜阵列编号与其他元件的侧面投影位置
Figure 14. Schematic diagram of the optical path of the 24-pass amplifier. (a) The optical path passes continuously through 1-disk-2-K2-3-disk-4-K1-5-disk-6-K2-7, where 1-7 represents the mirror numbers in Figure 14 (b), K1 and K2 represent the concave mirror K1 and convex mirror K2, respectively. K1-K2 defines the optical stable cavity. (b) The reflector array number and the lateral projection position of other elements
图 15 16通4f放大器与光学傅立叶传输多通放大器的(a)输出光斑与(b)波前曲率倒数随碟片晶体光焦度的变化。红色虚线代表4f多通放大器,蓝色实线代表光学傅立叶传输多通放大器,灰色实线代表理想情况的光学傅立叶传输多通放大器[ 24 ]
Figure 15. Variation in (a) output spot and (b) wavefront curvature inverse with a diopter of thin-disk for the 16-pass 4f amplifier and optical Fourier transmission multi-pass amplifier. The red dashed line represents the 4f multi-pass amplifier, the blue solid line represents the optical Fourier transmission multi-pass amplifier, and the gray solid line represents the optical Fourier transmission multi-pass amplifier in ideal circumstances[ 24 ]
图 16 基于光学傅立叶传输的8通放大器的光束传播。(黑线代表碟片晶体光焦度为0,红线和蓝线代表碟片晶体光焦度分别为±1/(40f)的光束传播,f为4f系统的焦距)[ 24 ]
Figure 16. Beam propagation of an 8-pass amplifier based on optical Fourier transmission. (The black line represents the diopter of the thin-disk at 0. The red and blue lines represent the diopter of the thin-disk are ±1/(40f), and f is the focal length of the 4f system)[ 24 ]
图 17 实际使用的光学傅立叶变换8通放大器的光束传播缩短了传输距离。(黑线代表碟片晶体光焦度为0,红线和蓝线代表碟片晶体光焦度=±1/(40f)对应的光束传播,f为4f系统的焦距)[ 24 ]
Figure 17.
Beam propagation of a practical optical Fourier transform 8-pass amplifier that shortens the transmission distance. (The black line represents the diopter of the thin-disk at 0. The red and blue lines represent the diopter of the thin-disk = ±1/(40f), and
f
is the focal length of the 4f
system)[
图 21 测量的3个八通放大器的小信号增益与碟片偏角ϕ的关系。红色线代表常规傅立叶传输多通放大器,蓝色符号取自相同放大器但M2镜片被垂直后向反射镜代替,绿色符号代表配备主动稳定系统的傅立叶传输多通放大器[ 26 ]
Figure 21. The relationship between the small signal gain of three eight-pass amplifiers and the measured deflection angle of the thin-disk. The red symbols represent conventional Fourier transmission multi-pass amplifiers, the blue symbols are taken from the same amplifiers but with the M2 lens being replaced by a vertical rearward reflector, and the green symbols represent the Fourier transmission multi-pass amplifiers equipped with an active stabilization system[ 26 ]
图 27 部分已报告的多通放大器输出激光参数。(a)脉冲重频vs脉冲能量,(b)脉冲宽度vs峰值功率,(c)平均输出功率vs峰值功率
Figure 27. The output laser parameters of some reported multi-pass amplifiers. (a) Pulse repetition frequency vs pulse energy, (b) pulse width vs peak power, and (c) average output power vs peak power
表 1
Table 1. Beam parameters before and after 4f system transmission
光束1 | 光束2 | 光束3 | |
入射前 参数 |
光斑半径0.12 mm | 光斑半径1.5 mm | 光斑半径3 mm |
波前曲率半径1 m | 波前曲率半径1 m | 波前曲率半径106 m | |
传输后 参数 |
光斑半径0.12 mm | 光斑半径1.5 mm | 光斑半径3 mm |
波前曲率半径1 m | 波前曲率半径1 m | 波前曲率半径106 m |
表 2 4种碟片多通放大器的优缺点
Table 2. Advantages and disadvantages of four types of thin-disk multi-pass amplifiers
方案名称 | 优点 | 缺点 |
4f中继成像 | 任何热透镜焦距下,均能复现光斑尺寸,光路设计简单 | 光束发散角随热透镜焦距变化剧烈,光束焦点处容易电离空气,需要真空环境运行或令焦点位于真空管内 |
4f中继成像——低温制冷 | 单次增益高、热光性能优异,光路设计简单 | 需要液氮等低温制冷,同时需要真空环境 |
谐振腔设计/光学傅立叶变换 | 抗热透镜变化性能优于4f中继成像 | 镜片上存在较小尺寸光斑,对镜片损伤阈值要求高;未进行皮秒脉冲放大实验,停留在理论阶段 |
近准直光束传输 | 可在空气环境运行,无空气电离 | 需要精心设计的碟片光焦度 |
其他 | — | — |
[1] | 张世达, 耿乙迦. 碲化铋倏逝场锁模器件的超快光纤激光器[J]. 中国光学,2022,15(3):433-442. doi: 10.37188/CO.2021-0216 ZHANG SH D, GENG Y J. Ultrafast fiber laser based on bismuth telluride evanescent field mode-locked device[J]. Chinese Optics, 2022, 15(3): 433-442. (in Chinese) doi: 10.37188/CO.2021-0216 |
[2] | 徐飞, 潘其坤, 陈飞, 等. 中红外Fe2+: ZnSe激光器研究进展[J]. 中国光学,2021,14(3):458-469. doi: 10.37188/CO.2020-0180 XU F, PAN Q K, CHEN F, et al. Development progress of Fe2+: ZnSe lasers[J]. Chinese Optics, 2021, 14(3): 458-469. (in Chinese) doi: 10.37188/CO.2020-0180 |
[3] | 牛娜, 窦微, 浦双双, 等. 蓝光二极管抽运Pr: YLF腔内倍频连续深紫外激光器[J]. 中国光学,2021,14(6):1395-1399. doi: 10.37188/CO.2021-0077 NIU N, DOU W, PU SH SH, et al. Continuous deep ultraviolet laser by intracavity frequency doubling of blue laser diode pumped Pr: YLF[J]. Chinese Optics, 2021, 14(6): 1395-1399. (in Chinese) doi: 10.37188/CO.2021-0077 |
[4] | NUBBEMEYER T, KAUMANNS M, UEFFING M, et al. 1kW, 200 mJ picosecond thin-disk laser system[J]. Optics Letters, 2017, 42(7): 1381-1384. doi: 10.1364/OL.42.001381 |
[5] | KRÖTZ P, WANDT C, GREBING C, et al. . Towards 2 kW, 20 kHz ultrafast thin-disk based regenerative amplifiers[C]. Advanced Solid State Lasers 2019, Optica Publishing Group, 2019: ATh1A. 8. |
[6] | MÜLLER D, ERHARD S, RONSIN O, et al. . Thin disk multi-pass amplifier[C]. Advanced Solid-State Photonics 2003, Optica Publishing Group, 2003: 278. |
[7] | LOESER M, SIEBOLD M, ROESER F, et al. . High energy CPA-free picosecond Yb: YAG amplifier[C]. Advanced Solid-State Photonics 2012, Optica Publishing Group, 2012: AM4A. 16. |
[8] | FRIEBEL F, PELLEGRINA A, PAPADOPOULOS D N, et al. . 57-mJ 20-Hz multipass laser amplifier based on Yb: CaF2 crystals[C]. Advanced Solid State Lasers 2013, Optica Publishing Group, 2013: ATu3A. 21. |
[9] | ZAPATA L E, LIN H, CALENDRON A L, et al. Cryogenic Yb: YAG composite-thin-disk for high energy and average power amplifiers[J]. Optics Letters, 2015, 40(11): 2610-2613. doi: 10.1364/OL.40.002610 |
[10] | SIEBOLD M, LOESER M, ROESER F, et al. High-energy, ceramic-disk Yb: LuAG laser amplifier[J]. Optics Express, 2012, 20(20): 21992-22000. doi: 10.1364/OE.20.021992 |
[11] | FRIEBEL F, PELLEGRINA A, PAPADOPOULOS D N, et al. Diode-pumped Yb: CaF2 multipass amplifier producing 50 mJ with dynamic analysis for high repetition rate operation[J]. Applied Physics B, 2014, 117(2): 597-603. doi: 10.1007/s00340-014-5872-4 |
[12] | ZWILICH M, EWERS B. Coherent beam combining of multipass thin-disk lasers with active phase control[J]. OSA Continuum, 2020, 3(11): 3176-3186. doi: 10.1364/OSAC.404658 |
[13] | PEREVEZENTSEV E, KUZNETSOV I, MUKHIN I, et al. Matrix multi-pass scheme disk amplifier[J]. Applied Optics, 2017, 56(30): 8471-8476. doi: 10.1364/AO.56.008471 |
[14] | SPEISER J. Thin disk lasers: history and prospects[J]. Proceedings of SPIE, 2016, 9893: 98930L. |
[15] | OCHI Y, NAGASHIMA K, MARUYAMA M, et al. . Effective multi-pass amplification system for Yb: YAG thin-disk laser[C]. Laser Applications Conference 2017, Optica Publishing Group, 2017: JTh2A. 31. |
[16] | KÖRNER J, HEIN J, KALUZA M C. Compact aberration-free relay-imaging multi-pass layouts for high-energy laser amplifiers[J]. Applied Sciences, 2016, 6(11): 353. doi: 10.3390/app6110353 |
[17] | SMRŽ M, MUŽÍK J, NOVÁK O, et al. Progress in kW-class picosecond thin-disk lasers development at the HiLASE[J]. Proceedings of SPIE, 2016, 9726: 972617. |
[18] | FAN T Y, RIPIN D J, AGGARWAL R L, et al. Cryogenic Yb3+-doped solid-state lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 448-459. doi: 10.1109/JSTQE.2007.896602 |
[19] | KOERNER J, VORHOLT C, LIEBETRAU H, et al. Measurement of temperature-dependent absorption and emission spectra of Yb: YAG, Yb: LuAG, and Yb: CaF2 between 20 °C and 200 °C and predictions on their influence on laser performance[J]. Journal of the Optical Society of America B, 2012, 29(9): 2493-2502. doi: 10.1364/JOSAB.29.002493 |
[20] | CALENDRON A L, ZAPATA L E, ÇANKAYA H, et al. . Optimized temperature/bandwidth operation of cryogenic Yb: YAG composite thin-disk laser amplifier[C]. High Intensity Lasers and High Field Phenomena 2014, Optica Publishing Group, 2014: JW2A. 10. |
[21] | ANTOGNINI A, SCHUHMANN K, AMARO F D, et al. Thin-disk Yb: YAG oscillator-amplifier laser, ASE, and effective Yb: YAG lifetime[J]. IEEE Journal of Quantum Electronics, 2009, 45(8): 993-1005. doi: 10.1109/JQE.2009.2014881 |
[22] | SCHUHMANN K, ANTOGNINI A, KIRCH K, et al. . Thin-disk laser for the measurement of the radii of the proton and the alpha-particle[C]. Advanced Solid State Lasers 2013, Optica Publishing Group, 2013: ATu3A. 46. |
[23] | TÜMMLER J, JUNG R, STIEL H, et al. High-repetition-rate chirped-pulse-amplification thin-disk laser system with joule-level pulse energy[J]. Optics Letters, 2009, 34(9): 1378-1380. doi: 10.1364/OL.34.001378 |
[24] | SCHUHMANN K, KIRCH K, MARSZALEK M, et al. Multipass amplifiers with self-compensation of the thermal lens[J]. Applied Optics, 2018, 57(35): 10323-10333. doi: 10.1364/AO.57.010323 |
[25] | ZEYEN M, ANTOGNINI A, KIRCH K, et al. Compact 20-pass thin-disk amplifier insensitive to thermal lensing[J]. Proceedings of SPIE, 2019, 10896: 108960X. |
[26] | SCHUHMANN K, KIRCH K, KNECHT A, et al. Passive alignment stability and auto-alignment of multipass amplifiers based on Fourier transforms[J]. Applied Optics, 2019, 58(11): 2904-2912. doi: 10.1364/AO.58.002904 |
[27] | NEGEL J P, VOSS A, AHMED M A, et al. 1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses[J]. Optics Letters, 2013, 38(24): 5442-5445. doi: 10.1364/OL.38.005442 |
[28] | SCHUHMANN K, AHMED M A, ANTOGNINI A, et al. Thin-disk laser multi-pass amplifier[J]. Proceedings of SPIE, 2015, 9342: 93420U. |
[29] | SCHUHMANN K, KIRCH K, NEZ F, et al. Thin-disk laser scaling limit due to thermal lens induced misalignment instability[J]. Applied Optics, 2016, 55(32): 9022-9032. doi: 10.1364/AO.55.009022 |
[30] | SCHUHMANN K, KIRCH K, ANTOGNINI A. Multi-pass resonator design for energy scaling of mode-locked thin-disk lasers[J]. Proceedings of SPIE, 2017, 10082: 100820J. |
[31] | SCHUHMANN K. The thin-disk laser for the 2S – 2P measurement in muonic helium[D]. Zurich: ETH Zurich, 2017. |
[32] | NEGEL J P, VOSS A, AHMED M A, et al. . Thin-disk multipass amplifier for ultrashort pulses with an output power of 264 W[C]. Advanced Solid State Lasers 2013, Optica Publishing Group, 2013: AF3A. 9. |
[33] | NEGEL J P, VOSS A, AHMED M A, et al. . 1.3 kW average output power Yb: YAG thin-disk multipass amplifier for multi-mJ picosecond laser pulses[C]. CLEO: Science and Innovations 2014, Optica Publishing Group, 2014: STu1O. 2. |
[34] | NEGEL J P, LOESCHER A, VOSS A, et al. Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm[J]. Optics Express, 2015, 23(16): 21064-21077. doi: 10.1364/OE.23.021064 |
[35] | LOESCHER A, NEGEL J P, GRAF T, et al. Radially polarized emission with 635 W of average power and 2.1 mJ of pulse energy generated by an ultrafast thin-disk multipass amplifier[J]. Optics Letters, 2015, 40(24): 5758-5761. doi: 10.1364/OL.40.005758 |
[36] | NEGEL J P, LOESCHER A, BAUER D, et al. . Second generation thin-disk multipass amplifier delivering picosecond pulses with 2 kW of average output power[C]. Advanced Solid State Lasers 2016, Optica Publishing Group, 2016: ATu4A. 5. |
[37] | NEGEL J P, LOESCHER A, DANNECKER B, et al. Thin-disk multipass amplifier for fs pulses delivering 400 W of average and 2.0 GW of peak power for linear polarization as well as 235 W and 1.2 GW for radial polarization[J]. Applied Physics B, 2017, 123(5): 156. doi: 10.1007/s00340-017-6739-2 |
[38] | RÖCKER C, LOESCHER A, BIENERT F, et al. Ultrafast green thin-disk laser exceeding 1.4 kW of average power[J]. Optics Letters, 2020, 45(19): 5522-5525. doi: 10.1364/OL.403781 |
[39] | RÖCKER C, LOESCHER A, NEGEL J P, et al. Direct amplification of sub-300fs pulses in a versatile thin-disk multipass amplifier[J]. Optics Communications, 2020, 460: 125159. doi: 10.1016/j.optcom.2019.125159 |
[40] |
DIETZ T, JENNE M, BAUER D,
et al. Ultrafast thin-disk multi-pass amplifier system providing 1.9 kW of average output power and pulse energies in the 10 mJ range at 1 ps of pulse duration for glass-cleaving applications[J].
Optics Express, 2020, 28(8): 11415-11423.
doi:
|
[41] | HERKOMMER C, KRÖTZ P, JUNG R, et al. Ultrafast thin-disk multipass amplifier with 720 mJ operating at kilohertz repetition rate for applications in atmospheric research[J]. Optics Express, 2020, 28(20): 30164-30173. doi: 10.1364/OE.404185 |
[42] | KEPPLER S, WANDT C, HORNUNG M, et al. Multipass amplifiers of POLARIS[J]. Proceedings of SPIE, 2013, 8780: 87800I. doi: 10.1117/12.2019248 |
[43] | JUNG R, TÜMMLER J, NUBBEMEYER T, et al. . Two-channel thin-disk laser for high pulse energy[C]. Advanced Solid State Lasers 2015, Optica Publishing Group, 2015: AW3A. 7. |