[1] |
CHEN SH Y, WANG Z CH, ZHANG D,
et al. Miniature fluorescence microscopy for imaging brain activity in freely-behaving animals[J].
Neuroscience Bulletin, 2020, 36(10): 1182-1190.
doi:
10.1007/s12264-020-00561-z
|
[2] |
GRIENBERGER C, KONNERTH A. Imaging calcium in neurons[J].
Neuron, 2012, 73(5): 862-885.
doi:
10.1016/j.neuron.2012.02.011
|
[3] |
王义强, 林方睿, 胡睿, 等. 大视场光学显微成像技术[J]. 中国光学(中英文),2022,15(6):1194-1210.WANG Y Q, LIN F R, HU R,
et al. Large field-of-view optical microscopic imaging technology[J].
Chinese Optics, 2022, 15(6): 1194-1210. (in Chinese)
|
[4] |
陈帅, 任林, 周镇乔, 等. 在体跨尺度双光子显微成像技术[J]. 中国光学(中英文),2022,15(6):1167-1181.CHEN SH, REN L, ZHOU ZH Q,
et al. In-vivo across-scales two-photon microscopic imaging technique[J].
Chinese Optics, 2022, 15(6): 1167-1181. (in Chinese)
|
[5] |
王鹏, 周瑶, 赵宇轩, 等. 用于多尺度高分辨率三维成像的双环光片荧光显微技术[J]. 中国光学(中英文),2022,15(6):1321-1331.WANG P, ZHOU Y, ZHAO Y X,
et al. Double-ring-modulated light sheet fluorescence microscopic technique for multi-scale high-resolution 3D imaging[J].
Chinese Optics, 2022, 15(6): 1321-1331. (in Chinese)
|
[6] |
YU H, SENARATHNA J, TYLER B M,
et al. Miniaturized optical neuroimaging in unrestrained animals[J].
NeuroImage, 2015, 113: 397-406.
doi:
10.1016/j.neuroimage.2015.02.070
|
[7] |
AHARONI D, KHAKH B S, SILVA A J,
et al. All the light that we can see: a new era in miniaturized microscopy[J].
Nature Methods, 2019, 16(1): 11-13.
doi:
10.1038/s41592-018-0266-x
|
[8] |
ZONG W J, WU R L, LI M L,
et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice[J].
Nature Methods, 2017, 14(7): 713-719.
doi:
10.1038/nmeth.4305
|
[9] |
GHOSH K K, BURNS L D, COCKER E D,
et al. Miniaturized integration of a fluorescence microscope[J].
Nature Methods, 2011, 8(10): 871-878.
doi:
10.1038/nmeth.1694
|
[10] |
CAI D J, AHARONI D, SHUMAN T,
et al. A shared neural ensemble links distinct contextual memories encoded close in time[J].
Nature, 2016, 534(7605): 115-118.
doi:
10.1038/nature17955
|
[11] |
CAMPOS P, WALKER J J, MOLLARD P. Diving into the brain: deep-brain imaging techniques in conscious animals[J].
Journal of Endocrinology, 2020, 246(2): R33-R50.
doi:
10.1530/JOE-20-0028
|
[12] |
BARBERA G, LIANG B, ZHANG L F,
et al. Spatially compact neural clusters in the dorsal striatum encode locomotion relevant information[J].
Neuron, 2016, 92(1): 202-213.
doi:
10.1016/j.neuron.2016.08.037
|
[13] |
ZHANG L F, LIANG B, BARBERA G,
et al. Miniscope GRIN lens system for calcium imaging of neuronal activity from deep brain structures in behaving animals[J].
Current Protocols in Neuroscience, 2019, 86(1): e56.
doi:
10.1002/cpns.56
|
[14] |
LIANG B, ZHANG L F, BARBERA G,
et al. Distinct and dynamic ON and OFF neural ensembles in the prefrontal cortex code social exploration[J].
Neuron, 2018, 100(3): 700-714.e9.
doi:
10.1016/j.neuron.2018.08.043
|
[15] |
JACOB A D, RAMSARAN A I, MOCLE A J,
et al. A compact head-mounted endoscope for in vivo calcium imaging in freely behaving mice[J].
Current Protocols in Neuroscience, 2018, 84(1): e51.
doi:
10.1002/cpns.51
|
[16] |
BAGRAMYAN A. Lightweight 1-photon miniscope for imaging in freely behaving animals at subcellular resolution[J].
IEEE Photonics Technology Letters, 2020, 32(15): 909-912.
doi:
10.1109/LPT.2020.3004283
|
[17] |
LIBERTI III W A, MARKOWITZ J E, PERKINS L N,
et al. Unstable neurons underlie a stable learned behavior[J].
Nature Neuroscience, 2016, 19(12): 1665-1671.
doi:
10.1038/nn.4405
|
[18] |
COHEN Y, SHEN J, SEMU D,
et al. Hidden neural states underlie canary song syntax[J].
Nature, 2020, 582(7813): 539-544.
doi:
10.1038/s41586-020-2397-3
|
[19] |
LIBERTI III W A, PERKINS L N, LEMAN D P,
et al. An open source, wireless capable miniature microscope system[J].
Journal of Neural Engineering, 2017, 14(4): 045001.
doi:
10.1088/1741-2552/aa6806
|
[20] |
Alvarado J S, Goffinet J, Michael V,
et al. Neural dynamics underlying birdsong practice and performance[J].
Nature, 2021, 599(7886): 635-639.
|
[21] |
SHUMAN T, AHARONI D, CAI D J,
et al. Breakdown of spatial coding and interneuron synchronization in epileptic mice[J].
Nature Neuroscience, 2020, 23(2): 229-238.
doi:
10.1038/s41593-019-0559-0
|
[22] |
BARBERA G, LIANG B, ZHANG L F,
et al. A wireless miniScope for deep brain imaging in freely moving mice[J].
Journal of Neuroscience Methods, 2019, 323: 56-60.
doi:
10.1016/j.jneumeth.2019.05.008
|
[23] |
WANG Y ZH, MA ZH T, LI W ZH,
et al.. Cable-free brain imaging with miniature wireless microscopes[J].
Journal of Biomedical Optics, 2023, 28(2): 026503.
|
[24] |
SKOCEK O, NÖBAUER T, WEILGUNY L,
et al. High-speed volumetric imaging of neuronal activity in freely moving rodents[J].
Nature Methods, 2018, 15(6): 429-432.
doi:
10.1038/s41592-018-0008-0
|
[25] |
PREVEDEL R, YOON Y G, HOFFMANN M,
et al. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy[J].
Nature Methods, 2014, 11(7): 727-730.
doi:
10.1038/nmeth.2964
|
[26] |
NÖBAUER T, SKOCEK O, PERNÍA-ANDRADE A J,
et al. Video rate volumetric Ca2+
imaging across cortex using seeded iterative demixing (SID) microscopy[J].
Nature Methods, 2017, 14(8): 811-818.
doi:
10.1038/nmeth.4341
|
[27] |
YANNY K, ANTIPA N, LIBERTI W,
et al. Miniscope3D: optimized single-shot miniature 3D fluorescence microscopy[J].
Light:Science
&Applications, 2020, 9: 171.
|
[28] |
BAGRAMYAN A, TABOURIN L, RASTQAR A,
et al. Focus-tunable microscope for imaging small neuronal processes in freely moving animals[J].
Photonics Research, 2021, 9(7): 1300-1309.
doi:
10.1364/PRJ.418154
|
[29] |
SUPEKAR O D, SIAS A, HANSEN S R,
et al. Miniature structured illumination microscope for
in vivo
3D imaging of brain structures with optical sectioning[J].
Biomedical Optics Express, 2022, 13(4): 2530-2541.
doi:
10.1364/BOE.449533
|
[30] |
GONZALEZ W G, ZHANG H W, HARUTYUNYAN A,
et al. Persistence of neuronal representations through time and damage in the hippocampus[J].
Science, 2019, 365(6455): 821-825.
doi:
10.1126/science.aav9199
|
[31] |
DE GROOT A, VAN DEN BOOM B J G, VAN GENDEREN R M,
et al. NINscope, a versatile miniscope for multi-region circuit investigations[J].
eLife, 2020, 9: e49987.
doi:
10.7554/eLife.49987
|
[32] |
Silva A J. Miniaturized two-photon microscope: seeing clearer and deeper into the brain[J].
Light,science
&applications, 2017, 6(8): e17104.
|
[33] |
WIRTSHAFTER H S, DISTERHOFT J F.
In vivo
multi-day calcium imaging of CA1 hippocampus in freely moving rats reveals a high preponderance of place cells with consistent place fields[J].
Journal of Neuroscience, 2022, 42(22): 4538-4554.
doi:
10.1523/JNEUROSCI.1750-21.2022
|
[34] |
AHARONI D, HOOGLAND T M. Circuit investigations with open-source miniaturized microscopes: past, present and future[J].
Frontiers in Cellular Neuroscience, 2019, 13: 141.
doi:
10.3389/fncel.2019.00141
|
[35] |
蓝凯秋, 杨西斌, 徐宝腾, 等. 双色荧光成像在体微型显微镜[J]. 光子学报,2022,51(6):0618001.
doi:
10.3788/gzxb20225106.0618001
LAN K Q, YANG X B, XU B T,
et al. In vivo, dual-color fluorescent imaging miniature microscope[J].
Acta Photonica Sinica, 2022, 51(6): 0618001. (in Chinese)
doi:
10.3788/gzxb20225106.0618001
|
[36] |
SCOTT B B, THIBERGE S Y, GUO C Y,
et al. Imaging cortical dynamics in GCaMP transgenic rats with a head-mounted widefield macroscope[J].
Neuron, 2018, 100(5): 1045-1058.e5.
doi:
10.1016/j.neuron.2018.09.050
|
[37] |
XUE Y J, DAVISON I G, BOAS D A,
et al. Single-shot 3D wide-field fluorescence imaging with a Computational Miniature Mesoscope[J].
Science Advances, 2020, 6(43): eabb7508.
doi:
10.1126/sciadv.abb7508
|
[38] |
STERN A, JAVIDI B. Three-dimensional image sensing, visualization, and processing using integral imaging[J].
Proceedings of the IEEE, 2006, 94(3): 591-607.
doi:
10.1109/JPROC.2006.870696
|
[39] |
邓慧, 吕国皎, 杨梅, 等. 基于掩膜板阵列的消串扰集成成像3D显示方法[J]. 液晶与显示,2022,37(5):592-597.
doi:
10.37188/CJLCD.2022-0027
DENG H, LYU G J, YANG M,
et al. Crosstalk-free integral imaging 3D display method based on a mask array[J].
Chinese Journal of Liquid Crystals and Displays, 2022, 37(5): 592-597. (in Chinese)
doi:
10.37188/CJLCD.2022-0027
|
[40] |
CONG L, WANG Z G, CHAI Y M,
et al. Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio)[J].
eLife, 2017, 6: e28158.
doi:
10.7554/eLife.28158
|
[41] |
徐斌, 于迅博, 高鑫, 等. 一种视点均匀分布的桌面式光场显示系统[J]. 液晶与显示,2022,37(5):573-580.
doi:
10.37188/CJLCD.2022-0041
XU B, YU X B, GAO X,
et al. Tabletop light field display system with uniform distribution of viewpoints[J].
Chinese Journal of Liquid Crystals and Displays, 2022, 37(5): 573-580. (in Chinese)
doi:
10.37188/CJLCD.2022-0041
|
[42] |
于迅博, 李涵宇, 高鑫, 等. 基于预处理卷积神经网络提升3D光场显示视觉分辨率的方法[J]. 液晶与显示,2022,37(5):549-554.
doi:
10.37188/CJLCD.2022-0044
YU X B, LI H Y, GAO X,
et al. 3D light field display with improved visual resolution based on pre-processing convolutional neural network[J].
Chinese Journal of Liquid Crystals and Displays, 2022, 37(5): 549-554. (in Chinese)
doi:
10.37188/CJLCD.2022-0044
|
[43] |
TANIDA J, KUMAGAI T, YAMADA K,
et al. Thin observation module by bound optics (TOMBO): concept and experimental verification[J].
Applied Optics, 2001, 40(11): 1806-1813.
doi:
10.1364/AO.40.001806
|
[44] |
MCCALL B, OLSEN R J, NELLES N J,
et al. Evaluation of a miniature microscope objective designed for fluorescence array microscopy detection of
Mycobacterium tuberculosis[J].
Archives of Pathology
&Laboratory Medicine, 2014, 138(3): 379-389.
|
[45] |
ANTIPA N, KUO G, HECKEL R,
et al. DiffuserCam: lensless single-exposure 3D imaging[J].
Optica, 2018, 5(1): 1-9.
doi:
10.1364/OPTICA.5.000001
|
[46] |
RYNES M L, SURINACH D A, LINN S,
et al. Miniaturized head-mounted microscope for whole-cortex mesoscale imaging in freely behaving mice[J].
Nature Methods, 2021, 18(4): 417-425.
doi:
10.1038/s41592-021-01104-8
|
[47] |
WU J M, GUO Y D, DENG CH,
et al. An integrated imaging sensor for aberration-corrected 3D photography[J].
Nature, 2022, 612(7938): 62-71.
doi:
10.1038/s41586-022-05306-8
|