表面粗糙度(nm) | A | B | g |
3 | 4.2365×10−5 | 4.4415×10−5 | 1.55 |
6 | 1.6940×10−4 | 4.4415×10−5 | 1.55 |
9 | 3.8130×10−4 | 4.4415×10−5 | 1.55 |
12 | 6.7787×10−4 | 4.4415×10−5 | 1.55 |
15 | 1.0580×10−3 | 4.4415×10−5 | 1.55 |
引用本文: | 高伟饶, 董科研, 江伦. 365彩票官网彩票[J]. 365赌球, 2023, 16(5): 1137-1148. doi: 10.37188/CO.2022-0253 |
Citation: | GAO Wei-rao, DONG Ke-yan, JIANG Lun. 365彩票官网网页版[J]. Chinese Optics, 2023, 16(5): 1137-1148. doi: 10.37188/CO.2022-0253 |
单波长激光通信终端之间数据通信时,信号传输与接收间良好的隔离性能是建立双工双向激光通信的关键。本文针对单个激光波长激光通信端机的传输与接收方案,以及激光通信终端整体的通信性能,分析了关键元器件的表面粗糙度和表面清洁度水平对激光通信终端隔离性能的影响。通过Harvey模型、ABg模型推导模型参数。利用TracePro软件对所设计的方案进行分析。得出以下结论:当信号传输通道中
For data communication between single wavelength laser communication terminals, good isolation between signal transmission and reception is the key to establishing duplex bidirectional laser communication. In this paper, with respect to the transmission and reception scheme of a single laser wavelength laser communication terminal and its overall communication performance, the influence of the surface roughness and contamination level of key components on the isolation performance of the laser communication terminal is analyzed. The model parameters are derived from Harvey model and ABg model, and the designed scheme is analyzed using TracePro software. When the surface roughness or contamination level of
图 3 CL分别为200、400、600、800时对应的N与β 1之间关系
Figure 3. The relationship between N and β 1 when CL are 200, 400, 600 and 800, respectively
图 7 不同表面粗糙度下的端机接收面光通量。(a)3 nm;(b)6 nm;(c)9 nm;(d)12 nm;(e)15 nm
Figure 7. The luminous flux of the receiving surfaces under different surface roughnesses. (a) 3 nm; (b) 6 nm; (c) 9 nm; (d) 12 nm; (e) 15 nm
图 10 不同的清洁度水平端机接收面光通量。(a)CL=200;(b)CL=400;(c)CL=600;(d)CL=800
Figure 10. The luminous flux of the receiving surface with different contamination levels. (a) CL=200; (b) CL=400; (c) CL=600; (d) CL=800
图 13 激光通信终端隔离度双变量分析图
Figure 13. Two-variable analysis diagram of laser communication terminal isolation
图 15 粗糙度为0.5 nm端机接收面光通量
Figure 15. Terminal’s receiving surface light flux with surface roughness of 0.5 nm
表 1 不同表面粗糙度ABg模型参数
Table 1. ABg model parameters for different surface roughnesses
表面粗糙度(nm) | A | B | g |
3 | 4.2365×10−5 | 4.4415×10−5 | 1.55 |
6 | 1.6940×10−4 | 4.4415×10−5 | 1.55 |
9 | 3.8130×10−4 | 4.4415×10−5 | 1.55 |
12 | 6.7787×10−4 | 4.4415×10−5 | 1.55 |
15 | 1.0580×10−3 | 4.4415×10−5 | 1.55 |
表 2 不同表面粗糙度光学天线ABg模型参数
Table 2. ABg model parameters of the optical antenna with different surface roughnesses
表面粗糙度(nm) | A | B | g | |
主镜 | 3 | 3.0643×10−5 | 4.4415×10−5 | 1.55 |
6 | 1.2257×10−4 | 4.4415×10−5 | 1.55 | |
9 | 2.7579×10−4 | 4.4415×10−5 | 1.55 | |
12 | 4.8737×10−4 | 4.4415×10−5 | 1.55 | |
15 | 7.6152×10−4 | 4.4415×10−5 | 1.55 | |
次镜 | 3 | 4.0426×10−5 | 4.4415×10−5 | 1.55 |
6 | 1.6171×10−4 | 4.4415×10−5 | 1.55 | |
9 | 3.6384×10−4 | 4.4415×10−5 | 1.55 | |
12 | 6.4682×10−4 | 4.4415×10−5 | 1.55 | |
15 | 1.0106×10−3 | 4.4415×10−5 | 1.55 |
表 3 不同清洁度(CL)ABg模型参数
Table 3. ABg model parameters for different contamination levels
表面清洁度CL | A | B | g |
200 | 7.237×10−6 | 6.102×10−5 | 1.5 |
400 | 1.685×10−4 | 6.102×10−5 | 1.5 |
600 | 1.271×10−3 | 6.102×10−5 | 1.5 |
800 | 5.769×10−3 | 6.102×10−5 | 1.5 |
表 4 光学设计指标
Table 4. Optical design indexes
指标 | 参数 |
倍率 | 10× |
入瞳直径/mm | 75 |
设计波长/nm | 1550 |
最大接收视场/mrad | 5 |
激光发射功率/dBm | 33 |
接收器灵敏度 | −45 dBm@10 Gbps |
表 5 隔离度测试结果
Table 5. Test results of isolation
1 | 2 | 3 | 平均值 | |
发射功率/dBm | 28 | 29 | 30 | |
通信接收功率/dBm | −49.8 | −49.0 | −47.8 | |
隔离度/dB | 77.8 | 78.0 | 77.8 | 77.86 |
[1] | 姜会林, 付强, 赵义武, 等. 空间信息网络与激光通信发展现状及趋势[J]. 物联网学报,2019,3(2):1-8.JIANG H L, FU Q, ZHAO Y W, et al. Development status and trend of space information network and laser communication[J]. Chinese Journal on Internet of Things, 2019, 3(2): 1-8. (in Chinese) |
[2] | 高世杰, 吴佳彬, 刘永凯, 等. 微小卫星激光通信系统发展现状与趋势[J]. 中国光学,2020,13(6):1171-1181. doi: 10.37188/CO.2020-0033 GAO SH J, WU J B, LIU Y K, et al. Development status and trend of micro-satellite laser communication systems[J]. Chinese Optics, 2020, 13(6): 1171-1181. (in Chinese) doi: 10.37188/CO.2020-0033 |
[3] | 田思聪, 佟存柱, 王立军, 等. 长春光机所高速垂直腔面发射激光器研究进展[J]. 中国光学(中英文),2022,15(5):946-953. doi: 10.37188/CO.2022-0136 TIAN S C, TONG C ZH, WANG L J, et al. Research progress of high-speed vertical-cavity surface-emitting laser in CIOMP[J]. Chinese Optics, 2022, 15(5): 946-953. (in Chinese) doi: 10.37188/CO.2022-0136 |
[4] | KAUSHAL H, KADDOUM G. Optical communication in space: challenges and mitigation techniques[J]. IEEE Communications Surveys &Tutorials, 2017, 19(1): 57-96. |
[5] | 李禹希, 张刘, 陈思桐, 等. 基于自抗扰算法的光电跟踪伺服控制方法研究[J]. 中国光学,2022,15(3):562-567. doi: 10.37188/CO.2022-0090 LI Y X, ZHANG L, CHEN S T, et al. Photoelectric tracking servo control method based on active disturbance rejection algorithm[J]. Chinese Optics, 2022, 15(3): 562-567. (in Chinese) doi: 10.37188/CO.2022-0090 |
[6] | 高铎瑞, 李天伦, 孙悦, 等. 空间激光通信最新进展与发展趋势[J]. 中国光学,2018,11(6):901-913. doi: 10.3788/CO.20181106.0901 GAO D R, LI T L, SUN Y, et al. Latest developments and trends of space laser communication[J]. Chinese Optics, 2018, 11(6): 901-913. (in Chinese) doi: 10.3788/CO.20181106.0901 |
[7] | 吴从均, 颜昌翔, 高志良. 空间激光通信发展概述[J]. 中国光学,2013,6(5):670-680. doi: 10.3788/CO.20130605.0670 WU C J, YAN CH X, GAO ZH L. Overview of space laser communications[J]. Chinese Optics, 2013, 6(5): 670-680. (in Chinese) doi: 10.3788/CO.20130605.0670 |
[8] | 吕博, 冯睿, 寇伟, 等. 折反射式空间相机光学系统设计与杂散光抑制[J]. 中国光学,2020,13(4):822-831. doi: 10.37188/CO.2019-0036 LÜ B, FENG R, KOU W, et al. Optical system design and stray light suppression of catadioptric space camera[J]. Chinese Optics, 2020, 13(4): 822-831. (in Chinese) doi: 10.37188/CO.2019-0036 |
[9] | 夏方园, 杨建峰, 幺周石, 等. 卡塞格伦光学天线收发隔离度分析与测试[J]. 光子学报,2017,46(10):1023001. doi: 10.3788/gzxb20174610.1023001 XIA F Y, YANG J F, YAO ZH SH, et al. Transmit-receive isolation analysis and test of cassegrain optical antenna[J]. Acta Photonica Sinica, 2017, 46(10): 1023001. (in Chinese) doi: 10.3788/gzxb20174610.1023001 |
[10] |
曲杨. 高精度低成本激光振镜扫描3D视觉系统关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
|
[11] |
XIA F Y, YANG J F, YAO Z S,
et al. Investigation of isolation for free space laser communication in the mono-wavelength optical T/R channels[J].
Optik, 2019, 181: 738-747.
doi:
|
[12] | 凌晋江, 李钢, 张仁斌, 等. 偏振光谱BRDF建模与仿真[J]. 光谱学与光谱分析,2016,36(1):42-46. doi: 10.3964/j.issn.1000-0593(2016)01-0042-05 LING J J, LI G, ZHANG R B, et al. Modeling and simulation of spectral polarimetric BRDF[J]. Spectroscopy and Spectral Analysis, 2016, 36(1): 42-46. (in Chinese) doi: 10.3964/j.issn.1000-0593(2016)01-0042-05 |
[13] | BENNETT H E. Scattering characteristics of optical materials[J]. Optical Engineering, 1978, 17(5): 175480. |
[14] |
王虎, 陈钦芳, 马占鹏, 等. 杂散光抑制与评估技术发展与展望(特邀)[J]. 光子学报,2022,51(7):0751406.
doi:
10.3788/gzxb20225107.0751406
|
[15] | 李茂月, 刘泽隆, 赵伟翔, 等. 面结构光在机检测的叶片反光抑制技术[J]. 中国光学,2022,15(3):464-475. doi: 10.37188/CO.2021-0194 LI M Y, LIU Z L, ZHAO W X, et al. Blade reflection suppression technology based on surface structured light on-machine detection[J]. Chinese Optics, 2022, 15(3): 464-475. (in Chinese) doi: 10.37188/CO.2021-0194 |
[16] | 石栋梁. 基于BRDF的光机系统杂散辐射研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.SHI D L. Research on stray light of optical and mechanical system based on BRDF[D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese) |
[17] | 李朝辉, 赵建科, 徐亮, 等. 点源透过率测试系统精度标定与分析[J]. 物理学报,2016,65(11):114206. doi: 10.7498/aps.65.114206 LI ZH H, ZHAO J K, XU L, et al. Analysis and calibration of precision for point source transmittance system[J]. Acta Physica Sinica, 2016, 65(11): 114206. (in Chinese) doi: 10.7498/aps.65.114206 |
[18] | HUBBARD R. M1 microroughness and dust contamination[EB/OL]. (2013-11). https://dkist.nso.edu/sites/atst.nso.edu/files/docs/TN-0013-D.pdf. |