[1] |
TORRANCE K E, SPARROW E M. Theory for off-specular reflection from roughened surfaces[J].
Journal of the Optical Society of America, 1967, 57(9): 1105-1114.
doi:
10.1364/JOSA.57.001105
|
[2] |
PRIEST R G, MEIER S R. Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces[J].
Optical Engineering, 2002, 41(5): 988-993.
doi:
10.1117/1.1467360
|
[3] |
GURTON K P, DAHMANI R. Effect of surface roughness and complex indices of refraction on polarized thermal emission[J].
Applied Optics, 2005, 44(26): 5361-5367.
doi:
10.1364/AO.44.005361
|
[4] |
HYDE IV M W, SCHMIDT J D, HAVRILLA M J. A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces[J].
Optics Express, 2009, 17(24): 22138-22153.
doi:
10.1364/OE.17.022138
|
[5] |
杨志勇, 陆高翔, 张志伟, 等. 热辐射环境下目标红外偏振特性分析[J]. 光学学报,2022,42(2):0220001.
doi:
10.3788/AOS202242.0220001
YANG ZH Y, LU G X, ZHANG ZH W,
et al. Analysis of infrared polarization characteristics of target in thermal radiation environment[J].
Acta Optica Sinica, 2022, 42(2): 0220001. (in Chinese)
doi:
10.3788/AOS202242.0220001
|
[6] |
YANG B, YAN CH X, ZHANG J Q,
et al. Refractive index and surface roughness estimation using passive multispectral and multiangular polarimetric measurements[J].
Optics Communications, 2016, 381: 336-345.
doi:
10.1016/j.optcom.2016.07.042
|
[7] |
ZHANG Y, ZHANG Y, ZHAO H J,
et al. Improved atmospheric effects elimination method for pBRDF models of painted surfaces[J].
Optics Express, 2017, 25(14): 16458-16475.
doi:
10.1364/OE.25.016458
|
[8] |
ZHANG Y, XUAN J B, ZHAO H J,
et al. Roughness estimation of inhomogeneous paint based on polarization imaging detection[J].
Proceedings of SPIE, 2018, 10849: 1084910.
|
[9] |
ZHAN H Y, VOELZ D G, KUPINSKI M. Parameter-based imaging from passive multispectral polarimetric measurements[J].
Optics Express, 2019, 27(20): 28832-28843.
doi:
10.1364/OE.27.028832
|
[10] |
GURTON K, FELTON M, MACK R,
et al. MidIR and LWIR polarimetric sensor comparison study[J].
Proceedings of SPIE, 2010, 7672: 767205.
doi:
10.1117/12.850341
|
[11] |
GURTON K P, FELTON M. Remote detection of buried land-mines and IEDs using LWIR polarimetric imaging[J].
Optics Express, 2012, 20(20): 22344-22359.
doi:
10.1364/OE.20.022344
|
[12] |
ROWE M P, PUGH E N, TYO J S,
et al. Polarization-difference imaging: a biologically inspired technique for observation through scattering media[J].
Optics Letters, 1995, 20(6): 608-610.
doi:
10.1364/OL.20.000608
|
[13] |
SCHECHNER Y Y, KARPEL N. Recovery of underwater visibility and structure by polarization analysis[J].
IEEE Journal of Oceanic Engineering, 2005, 30(3): 570-587.
doi:
10.1109/JOE.2005.850871
|
[14] |
TREIBITZ T, SCHECHNER Y Y. Active polarization descattering[J].
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(3): 385-399.
doi:
10.1109/TPAMI.2008.85
|
[15] |
HAN P L, LIU F, WEI Y,
et al. Optical correlation assists to enhance underwater polarization imaging performance[J].
Optics and Lasers in Engineering, 2020, 134: 106256.
doi:
10.1016/j.optlaseng.2020.106256
|
[16] |
LIU Y, YORK T, AKERS W J,
et al. Complementary fluorescence-polarization microscopy using division-of-focal-plane polarization imaging sensor[J].
Journal of Biomedical Optics, 2012, 17(11): 116001.
doi:
10.1117/1.JBO.17.11.116001
|
[17] |
HE CH, HE H H, CHANG J T,
et al. Polarisation optics for biomedical and clinical applications: a review[J].
Light:Science
&Applications, 2021, 10(1): 194.
|
[18] |
ANDRE Y, LAHERRERE J M, BRET-DIBAT T,
et al. Instrumental concept and performances of the POLDER instrument[J].
Proceedings of SPIE, 1995, 2572: 79-90.
doi:
10.1117/12.216932
|
[19] |
CHENAULT D B, VADEN J P, MITCHELL D A,
et al. Infrared polarimetric sensing of oil on water[J].
Proceedings of SPIE, 2016, 9999: 99990D.
|
[20] |
YUFFA A J, GURTON K P, VIDEEN G. Three-dimensional facial recognition using passive long-wavelength infrared polarimetric imaging[J].
Applied Optics, 2014, 53(36): 8514-8521.
doi:
10.1364/AO.53.008514
|
[21] |
RIGGAN B S, SHORT N J, HU SH W,
et al. . Estimation of visible spectrum faces from polarimetric thermal faces[C].
2016 IEEE 8th International Conference on Biometrics Theory, Applications and Systems (BTAS), IEEE, 2016: 1-7.
|
[22] |
张景华, 张焱, 石志广, 等. 基于法向量估计的透明物体表面反射光分离[J]. 光学学报,2021,41(15):1526001.
doi:
10.3788/AOS202141.1526001
ZHANG J H, ZHANG Y, SHI ZH G,
et al. Reflected light separation on transparent object surface based on normal vector estimation[J].
Acta Optica Sinica, 2021, 41(15): 1526001. (in Chinese)
doi:
10.3788/AOS202141.1526001
|
[23] |
LI N, ZHAO Y Q, PAN Q,
et al. Removal of reflections in LWIR image with polarization characteristics[J].
Optics Express, 2018, 26(13): 16488-16504.
doi:
10.1364/OE.26.016488
|
[24] |
KONG N, TAI Y W, SHIN J S. A physically-based approach to reflection separation: from physical modeling to constrained optimization[J].
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(2): 209-221.
doi:
10.1109/TPAMI.2013.45
|
[25] |
NARASIMHAN S G, NAYAR S K. Vision and the atmosphere[J].
International Journal of Computer Vision, 2002, 48(3): 233-254.
doi:
10.1023/A:1016328200723
|
[26] |
SCHECHNER Y Y, NARASIMHAN S G, NAYAR S K. Polarization-based vision through haze[J].
Applied Optics, 2003, 42(3): 511-525.
doi:
10.1364/AO.42.000511
|
[27] |
LI N, ZHAO Y Q, PAN Q,
et al. Illumination-invariant road detection and tracking using LWIR polarization characteristics[J].
ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 180: 357-369.
doi:
10.1016/j.isprsjprs.2021.08.022
|
[28] |
LI N, ZHAO Y Q, WU R Y,
et al. Polarization-guided road detection network for LWIR division-of-focal-plane camera[J].
Optics Letters, 2021, 46(22): 5679-5682.
doi:
10.1364/OL.441817
|
[29] |
YAROSLAVSKY A N, FENG X, YU S H,
et al. Dual-wavelength optical polarization imaging for detecting skin cancer margins[J].
Journal of Investigative Dermatology, 2020, 140(10): 1994-2000.e1.
doi:
10.1016/j.jid.2020.03.947
|
[30] |
MAIGNAN F, BRÉON F M, FÉDÈLE E,
et al. Polarized reflectances of natural surfaces: spaceborne measurements and analytical modeling[J].
Remote Sensing of Environment, 2009, 113(12): 2642-2650.
doi:
10.1016/j.rse.2009.07.022
|
[31] |
RIZKI AKBAR P, TETUKO S S J, KUZE H. A novel circularly polarized synthetic aperture radar (CP-SAR) system onboard a spaceborne platform[J].
International Journal of Remote Sensing, 2010, 31(4): 1053-1060.
doi:
10.1080/01431160903156528
|
[32] |
CHUN C S L, FLEMING D L, HARVEY W A,
et al. Polarization-sensitive thermal imaging sensor[J].
Proceedings of SPIE, 1995, 2552: 438-444.
doi:
10.1117/12.218293
|
[33] |
PEZZANITI J L, CHENAULT D, GURTON K,
et al. Detection of obscured targets with IR polarimetric imaging[J].
Proceedings of SPIE, 2014, 9072: 90721D.
|
[34] |
TYO J S, GOLDSTEIN D L, CHENAULT D B,
et al. Review of passive imaging polarimetry for remote sensing applications[J].
Applied Optics, 2006, 45(22): 5453-5469.
doi:
10.1364/AO.45.005453
|
[35] |
周奎, 单政, 张倩, 等. MEMS法布里-珀罗滤波芯片及其光谱探测应用研究进展[J]. 光学学报,2022,42(8):0800001.
doi:
10.3788/AOS202242.0800001
ZHOU K, SHAN ZH, ZHANG Q,
et al. Research progresses of MEMS Fabry-Perot filtering chips and their applications for spectral detection[J].
Acta Optica Sinica, 2022, 42(8): 0800001. (in Chinese)
doi:
10.3788/AOS202242.0800001
|
[36] |
GARLICK G F J, STEIGMANN G A, LAMB W E. Differential optical polarization detectors: US, 3992571[P]. 1976-11-16.
|
[37] |
FARLOW C A, CHENAULT D B, PEZZANITI J L,
et al. Imaging polarimeter development and applications[J].
Proceedings of SPIE, 2002, 4481: 118-125.
doi:
10.1117/12.452880
|
[38] |
DIRIX Y, TERVOORT T A, BASTIAANSEN C. Optical properties of oriented polymer/dye polarizers[J].
Macromolecules, 1995, 28(2): 486-491.
doi:
10.1021/ma00106a011
|
[39] |
WOLFF L B, MANCINI T A, POULIQUEN P,
et al. Liquid crystal polarization camera[J].
IEEE Transactions on Robotics and Automation, 1997, 13(2): 195-203.
doi:
10.1109/70.563642
|
[40] |
BROER D J, VAN DER V J. Method of manufacturing a polarization filter and a polarization filter so obtained: US, 5024850[P]. 1991-06-18.
|
[41] |
ZHAO X J, BERMAK A, BOUSSAID F,
et al. Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum[J].
Optics Express, 2010, 18(17): 17776-17787.
doi:
10.1364/OE.18.017776
|
[42] |
MYHRE G, HSU W L, PEINADO A,
et al. Liquid crystal polymer full-stokes division of focal plane polarimeter[J].
Optics Express, 2012, 20(25): 27393-27409.
doi:
10.1364/OE.20.027393
|
[43] |
张士元, 孙子珺, 穆全全, 等. 用于偏振成像的液晶微偏振阵列研究进展[J]. 液晶与显示,2022,37(3):292-309.
doi:
10.37188/CJLCD.2021-0330
ZHANG SH Y, SUN Z J, MU Q Q,
et al. Review on liquid crystal micropolarizer array for polarization imaging[J].
Chinese Journal of Liquid Crystals and Displays, 2022, 37(3): 292-309. (in Chinese)
doi:
10.37188/CJLCD.2021-0330
|
[44] |
王骁乾, 沈冬, 郑致刚, 等. 液晶光控取向技术进展[J]. 液晶与显示,2015,30(5):737-751.
doi:
10.3788/YJYXS20153005.0737
WANG X Q, SHEN D, ZHENG ZH G,
et al. Review on liquid crystal photoalignment technologies[J].
Chinese Journal of Liquid Crystals and Displays, 2015, 30(5): 737-751. (in Chinese)
doi:
10.3788/YJYXS20153005.0737
|
[45] |
ZHAO J C, QIU M, YU X CH,
et al. Defining deep-subwavelength-resolution, wide-color-gamut, and large-viewing-angle flexible subtractive colors with an ultrathin asymmetric Fabry-Perot lossy cavity[J].
Advanced Optical Materials, 2019, 7(23): 1900646.
doi:
10.1002/adom.201900646
|
[46] |
BOKOR N, SHECHTER R, DAVIDSON N,
et al. Achromatic phase retarder by slanted illumination of a dielectric grating with period comparable with the wavelength[J].
Applied Optics, 2001, 40(13): 2076-2080.
doi:
10.1364/AO.40.002076
|
[47] |
付秀华, 林晓敏, 张功, 等. 红外宽波段亚波长金属线栅偏振元件的研制[J]. 中国激光,2021,48(9):0903002.
doi:
10.3788/CJL202148.0903002
FU X H, LIN X M, ZHANG G,
et al. Development of infrared wide band polarizing elements with subwavelength metal wire grids[J].
Chinese Journal of Lasers, 2021, 48(9): 0903002. (in Chinese)
doi:
10.3788/CJL202148.0903002
|
[48] |
YEH P. A new optical model for wire grid polarizers[J].
Optics Communications, 1978, 26(3): 289-292.
doi:
10.1016/0030-4018(78)90203-1
|
[49] |
LALANNE P, LEMERCIER-LALANNE D. On the effective medium theory of subwavelength periodic structures[J].
Journal of Modern Optics, 1996, 43(10): 2063-2085.
doi:
10.1080/09500349608232871
|
[50] |
TYAN R C, SALVEKAR A A, CHOU H P,
et al. Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter[J].
Journal of the Optical Society of America A, 1997, 14(7): 1627-1636.
doi:
10.1364/JOSAA.14.001627
|
[51] |
AHN S W, LEE K D, KIM J S,
et al. Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography[J].
Nanotechnology, 2005, 16(9): 1874-1877.
doi:
10.1088/0957-4484/16/9/076
|
[52] |
YAMADA I, NISHII J, SAITO M. Incident angle and temperature dependence of WSi wire-grid polarizer[J].
Infrared Physics
&Technology, 2014, 63: 92-96.
|
[53] |
XIA J, YUAN ZH H, WANG CH,
et al. Design and fabrication of a linear polarizer in the 8-12μm infrared region with multilayer nanogratings[J].
OSA Continuum, 2019, 2(5): 1683-1692.
doi:
10.1364/OSAC.2.001683
|
[54] |
ZHANG ZH G, DONG F L, CHENG T,
et al. Nano-fabricated pixelated micropolarizer array for visible imaging polarimetry[J].
Review of Scientific Instruments, 2014, 85(10): 105002.
doi:
10.1063/1.4897270
|
[55] |
SUN D, FENG B, YANG B,
et al. Design and fabrication of an InGaAs focal plane array integrated with linear-array polarization grating[J].
Optics Letters, 2020, 45(6): 1559-1562.
doi:
10.1364/OL.376110
|
[56] |
GRUEV V, PERKINS R, YORK T. CCD polarization imaging sensor with aluminum nanowire optical filters[J].
Optics Express, 2010, 18(18): 19087-19094.
doi:
10.1364/OE.18.019087
|
[57] |
GRUEV V. Fabrication of a dual-layer aluminum nanowires polarization filter array[J].
Optics Express, 2011, 19(24): 24361-24369.
doi:
10.1364/OE.19.024361
|
[58] |
MA X, DONG F L, ZHANG ZH G,
et al. Pixelated-polarization-camera-based polarimetry system for wide real-time optical rotation measurement[J].
Sensors and Actuators B:Chemical, 2019, 283: 857-864.
doi:
10.1016/j.snb.2018.12.098
|
[59] |
曹暾, 刘宽, 李阳, 等. 可调谐光学超构材料及其应用[J]. 中国光学,2021,14(4):968-985.
doi:
10.37188/CO.2021-0080
CAO T, LIU K, LI Y,
et al. Tunable optical metamaterials and their applications[J].
Chinese Optics, 2021, 14(4): 968-985. (in Chinese)
doi:
10.37188/CO.2021-0080
|
[60] |
SHELBY R A, SMITH D R, SCHULTZ S. Experimental verification of a negative index of refraction[J].
Science, 2001, 292(5514): 77-79.
doi:
10.1126/science.1058847
|
[61] |
VESELAGO V G. The electrodynamics of substances with simultaneously negative values of
ε
and μ[J].
Soviet Physics Uspekhi, 1968, 10(4): 509-514.
doi:
10.1070/PU1968v010n04ABEH003699
|
[62] |
田小永, 尹丽仙, 李涤尘. 三维超材料制造技术现状与趋势[J]. 光电工程,2017,44(1):69-76.
TIAN X Y, YIN L X, LI D CH. Current situation and trend of fabrication technologies for three-dimensional metamaterials[J].
Opto-Electronic Engineering, 2017, 44(1): 69-76. (in Chinese)
|
[63] |
余晓畅, 许雅晴, 蔡佳辰, 等. 可调微纳滤波结构的研究进展[J]. 中国光学,2021,14(5):1069-1088.
doi:
10.37188/CO.2021-0044
YU X CH, XU Y Q, CAI J CH,
et al. Progress of tunable micro-nano filtering structures[J].
Chinese Optics, 2021, 14(5): 1069-1088. (in Chinese)
doi:
10.37188/CO.2021-0044
|
[64] |
付娆, 李子乐, 郑国兴. 超构表面的振幅调控及其功能器件研究进展[J]. 中国光学,2021,14(4):886-899.
doi:
10.37188/CO.2021-0017
FU R, LI Z L, ZHENG G X. Research development of amplitude-modulated metasurfaces and their functional devices[J].
Chinese Optics, 2021, 14(4): 886-899. (in Chinese)
doi:
10.37188/CO.2021-0017
|
[65] |
YU N F, GENEVET P, KATS M A,
et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J].
Science, 2011, 334(6054): 333-337.
doi:
10.1126/science.1210713
|
[66] |
YU N F, AIETA F, GENEVET P,
et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J].
Nano Letters, 2012, 12(12): 6328-6333.
doi:
10.1021/nl303445u
|
[67] |
DENG Y D, CAI Z R, DING Y T,
et al. Recent progress in metasurface-enabled optical waveplates[J].
Nanophotonics, 2022, 11(10): 2219-2244.
doi:
10.1515/nanoph-2022-0030
|
[68] |
JIANG ZH H, LIN L, MA D,
et al. Broadband and wide field-of-view plasmonic metasurface-enabled waveplates[J].
Scientific Reports, 2014, 4: 7511.
doi:
10.1038/srep07511
|
[69] |
刘东明, 吕婷婷, 刘强, 等. 可开关的多功能超构表面波片特性研究[J]. 中国光学,2021,14(4):1029-1037.
doi:
10.37188/CO.2021-0100
LIU D M, LV T T, LIU Q,
et al. Performance study on switchable and multifunctional metasurface wave plate[J].
Chinese Optics, 2021, 14(4): 1029-1037. (in Chinese)
doi:
10.37188/CO.2021-0100
|
[70] |
LI J X, WANG Y Q, CHEN CH,
et al. From lingering to rift: metasurface decoupling for near- and far-field functionalization[J].
Advanced Materials, 2021, 33(16): 2007507.
doi:
10.1002/adma.202007507
|
[71] |
WU T, ZHANG X Q, XU Q,
et al. Dielectric metasurfaces for complete control of phase, amplitude, and polarization[J].
Advanced Optical Materials, 2022, 10(1): 2101223.
doi:
10.1002/adom.202101223
|
[72] |
KARIMI E, SCHULZ S A, DE LEON I,
et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J].
Light:Science
&Applications, 2014, 3(5): e167.
|
[73] |
AHMED H, KIM H, ZHANG Y B,
et al. Optical metasurfaces for generating and manipulating optical vortex beams[J].
Nanophotonics, 2022, 11(5): 941-956.
doi:
10.1515/nanoph-2021-0746
|
[74] |
于洋, 仲帆, 江西, 等. 基于旋转超表面的相干自旋霍尔效应的可调光束[J]. 中国光学,2021,14(4):927-934.
doi:
10.37188/CO.2021-0097
YU Y, ZHONG F, JIANG X,
et al. Dynamical optical beam produced in rotational metasurface based on coherent spin hall effect[J].
Chinese Optics, 2021, 14(4): 927-934. (in Chinese)
doi:
10.37188/CO.2021-0097
|
[75] |
倪一博, 闻顺, 沈子程, 等. 基于超构表面的多维光场感知[J]. 中国激光,2021,48(19):1918003.
doi:
10.3788/CJL202148.1918003
NI Y B, WEN SH, SHEN Z CH,
et al. Multidimensional light field sensing based on metasurfaces[J].
Chinese Journal of Lasers, 2021, 48(19): 1918003. (in Chinese)
doi:
10.3788/CJL202148.1918003
|
[76] |
KILDISHEV A V, BOLTASSEVA A, SHALAEV V M. Planar photonics with metasurfaces[J].
Science, 2013, 339(6125): 1232009.
doi:
10.1126/science.1232009
|
[77] |
麦尔·斯蒂芬. 等离激元学: 基础与应用[M]. 张彤, 王琦龙, 张晓阳, 等, 译. 南京: 东南大学出版社, 2014: 3-13.MAIER S A.
Plasmonics: Fundamentals and Applications[M]. ZHANG T, WANG Q L, ZHANG X Y,
et al. , trans. Nanjing: Southeast University Press, 2014: 3-13. (in Chinese)
|
[78] |
AIETA F, GENEVET P, KATS M A,
et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J].
Nano Letters, 2012, 12(9): 4932-4936.
doi:
10.1021/nl302516v
|
[79] |
NI X J, ISHII S, KILDISHEV A V,
et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses[J].
Light:Science
&Applications, 2013, 2(4): e72.
|
[80] |
SUN SH L, YANG K Y, WANG C M,
et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J].
Nano Letters, 2012, 12(12): 6223-6229.
doi:
10.1021/nl3032668
|
[81] |
DING F, YANG Y Q, DESHPANDE R A,
et al. A review of gap-surface plasmon metasurfaces: fundamentals and applications[J].
Nanophotonics, 2018, 7(6): 1129-1156.
doi:
10.1515/nanoph-2017-0125
|
[82] |
KIM H C, CHENG X. SERS-active substrate based on gap surface plasmon polaritons[J].
Optics Express, 2009, 17(20): 17234-17241.
doi:
10.1364/OE.17.017234
|
[83] |
郭绮琪, 陈溢杭. 基于介电常数近零模式与间隙表面等离激元强耦合的增强非线性光学效应[J]. 物理学报,2021,70(18):187303.
doi:
10.7498/aps.70.20210290
GUO Q Q, CHEN Y H. Enhanced nonlinear optical effects based on strong coupling between epsilon-near-zero mode and gap surface plasmons[J].
Acta Physica Sinica, 2021, 70(18): 187303. (in Chinese)
doi:
10.7498/aps.70.20210290
|
[84] |
PORS A, NIELSEN M G, BOZHEVOLNYI S I. Plasmonic metagratings for simultaneous determination of Stokes parameters[J].
Optica, 2015, 2(8): 716-723.
doi:
10.1364/OPTICA.2.000716
|
[85] |
SHALTOUT A, LIU J J, KILDISHEV A,
et al. Photonic spin hall effect in gap–plasmon metasurfaces for on-chip chiroptical spectroscopy[J].
Optica, 2015, 2(10): 860-863.
doi:
10.1364/OPTICA.2.000860
|
[86] |
BOROVIKS S, DESHPANDE R A, MORTENSEN N A,
et al. Multifunctional metamirror: polarization splitting and focusing[J].
ACS Photonics, 2018, 5(5): 1648-1653.
doi:
10.1021/acsphotonics.7b01091
|
[87] |
DING F, CHEN Y T, BOZHEVOLNYI S I. Gap-surface plasmon metasurfaces for linear-polarization conversion, focusing, and beam splitting[J].
Photonics Research, 2020, 8(5): 707-714.
doi:
10.1364/PRJ.386655
|
[88] |
ZHANG J, ELKABBASHIM, WEIR,
et al. Plasmon metasurfaces with 42.39% transmission efficiency in visible[J].
Light:Science
&Applications, 2019, 8(1): 53.
|
[89] |
WEI SH W, YANG ZH Y, ZHAO M. Design of ultracompact polarimeters based on dielectric metasurfaces[J].
Optics Letters, 2017, 42(8): 1580-1583.
doi:
10.1364/OL.42.001580
|
[90] |
LIN D M, FAN P Y, HASMAN E,
et al. Dielectric gradient metasurface optical elements[J].
Science, 2014, 345(6194): 298-302.
doi:
10.1126/science.1253213
|
[91] |
HU Y Q, WANG X D, LUO X H,
et al. All-dielectric metasurfaces for polarization manipulation: principles and emerging applications[J].
Nanophotonics, 2020, 9(12): 3755-3780.
doi:
10.1515/nanoph-2020-0220
|
[92] |
KHORASANINEJAD M, CHEN W T, ZHU A Y,
et al. Multispectral chiral imaging with a metalens[J].
Nano Letters, 2016, 16(7): 4595-4600.
doi:
10.1021/acs.nanolett.6b01897
|
[93] |
YANG ZH Y, WANG ZH K, WANG Y X,
et al. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling[J].
Nature Communications, 2018, 9(1): 4607.
doi:
10.1038/s41467-018-07056-6
|
[94] |
刘永健, 张飞, 谢婷, 等. 基于伴随仿真的偏振复用超构透镜[J]. 中国光学,2021,14(4):754-763.
doi:
10.37188/CO.2021-0035
LIU Y J, ZHANG F, XIE T,
et al. Polarization-multiplexed metalens enabled by adjoint optimization[J].
Chinese Optics, 2021, 14(4): 754-763. (in Chinese)
doi:
10.37188/CO.2021-0035
|
[95] |
KHORASANINEJAD M, CHEN W T, DEVLIN R C,
et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging[J].
Science, 2016, 352(6290): 1190-1194.
doi:
10.1126/science.aaf6644
|
[96] |
ZHAO J C, YU X CH, ZHOU K,
et al. Polarization-sensitive subtractive structural color used for information encoding and dynamic display[J].
Optics and Lasers in Engineering, 2021, 138: 106421.
doi:
10.1016/j.optlaseng.2020.106421
|
[97] |
范智斌, 陈泽茗, 周鑫, 等. 氮化硅光子器件与应用研究进展[J]. 中国光学,2021,14(4):998-1018.
doi:
10.37188/CO.2021-0093
FAN ZH B, CHEN Z M, ZHOU X,
et al. Recent advances in silicon nitride-based photonic devices and applications[J].
Chinese Optics, 2021, 14(4): 998-1018. (in Chinese)
doi:
10.37188/CO.2021-0093
|
[98] |
PANCHARATNAM S. Generalized theory of interference and its applications[J].
Proceedings of the Indian Academy of Sciences - Section A, 1956, 44(6): 398-417.
doi:
10.1007/BF03046095
|
[99] |
BERRY M V. Quantal phase factors accompanying adiabatic changes[J].
Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences, 1984, 392(1802): 45-57.
|
[100] |
HSIAO H H, CHU C H, TSAI D P. Fundamentals and applications of metasurfaces[J].
Small Methods, 2017, 1(4): 1600064.
doi:
10.1002/smtd.201600064
|
[101] |
ARBABI A, HORIE Y, BAGHERI M,
et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J].
Nature Nanotechnology, 2015, 10(11): 937-943.
doi:
10.1038/nnano.2015.186
|
[102] |
ARBABI E, KAMALI S M, ARBABI A,
et al. Full-Stokes imaging polarimetry using dielectric metasurfaces[J].
ACS Photonics, 2018, 5(8): 3132-3140.
doi:
10.1021/acsphotonics.8b00362
|
[103] |
YAN CH, LI X, PU M B,
et al. Midinfrared real-time polarization imaging with all-dielectric metasurfaces[J].
Applied Physics Letters, 2019, 114(16): 161904.
doi:
10.1063/1.5091475
|
[104] |
REN Y Z, GUO SH H, ZHU W Q,
et al. Full-Stokes polarimetry for visible light enabled by an all-dielectric metasurface[J].
Advanced Photonics Research, 2022, 3(7): 2100373.
doi:
10.1002/adpr.202100373
|
[105] |
RUBIN N A, D’AVERSA G, CHEVALIER P,
et al. Matrix Fourier optics enables a compact full-Stokes polarization camera[J].
Science, 2019, 365(6448): eaax1839.
doi:
10.1126/science.aax1839
|
[106] |
RUBIN N A, CHEVALIER P, JUHL M,
et al. Imaging polarimetry through metasurface polarization gratings[J].
Optics Express, 2022, 30(6): 9389-9412.
doi:
10.1364/OE.450941
|
[107] |
CHEN W T, ZHU A Y, SANJEEV V,
et al. A broadband achromatic metalens for focusing and imaging in the visible[J].
Nature Nanotechnology, 2018, 13(3): 220-226.
doi:
10.1038/s41565-017-0034-6
|
[108] |
李效欣. 基于超表面的宽带消色差偏振成像研究[D]. 哈尔滨: 哈尔滨工业大学, 2021: 7-10.LI X X. Broadband achromatic polarization imaging based on metasurface[D]. Harbin: Harbin Institute of Technology, 2021: 7-10. (in Chinese)
|
[109] |
KHORASANINEJAD M, SHI Z, ZHU A Y,
et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J].
Nano Letters, 2017, 17(3): 1819-1824.
doi:
10.1021/acs.nanolett.6b05137
|
[110] |
AIETA F, KATS M A, GENEVET P,
et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J].
Science, 2015, 347(6228): 1342-1345.
doi:
10.1126/science.aaa2494
|
[111] |
WANG SH M, WU P C, SU V C,
et al. Broadband achromatic optical metasurface devices[J].
Nature Communications, 2017, 8(1): 187.
doi:
10.1038/s41467-017-00166-7
|
[112] |
CHENG Q Q, MA M L, YU D,
et al. Broadband achromatic metalens in terahertz regime[J].
Science Bulletin, 2019, 64(20): 1525-1531.
doi:
10.1016/j.scib.2019.08.004
|
[113] |
OU K, YU F L, LI G H,
et al. Mid-infrared polarization-controlled broadband achromatic metadevice[J].
Science Advances, 2020, 6(37): eabc0711.
doi:
10.1126/sciadv.abc0711
|
[114] |
欧凯. 人工微结构超表面的光场调控物理及其应用[D]. 上海: 中国科学院大学(中国科学院上海技术物理研究所), 2021: 47-60.OU K. Manipulation the light based on artificial microstructure metasurfaces and its applications[D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics, Chinese Academy of Sciences), 2021: 47-60. (in Chinese)
|
[115] |
FENG X, WANG Y X, WEI Y X,
et al. Optical multiparameter detection system based on a broadband achromatic metalens array[J].
Advanced Optical Materials, 2021, 9(19): 2100772.
doi:
10.1002/adom.202100772
|
[116] |
肖行健, 祝世宁, 李涛. 宽带消色差平面透镜的设计与参量分析[J]. 红外与激光工程,2020,49(9):20201032.
doi:
10.3788/IRLA20201032
XIAO X J, ZHU SH N, LI T. Design and parametric analysis of the broadband achromatic flat lens[J].
Infrared and Laser Engineering, 2020, 49(9): 20201032. (in Chinese)
doi:
10.3788/IRLA20201032
|
[117] |
CHEN J, HU SH SH, ZHU SH N,
et al. Metamaterials: from fundamental physics to intelligent design[J].
Interdisciplinary Materials, 2023, 3(1): 5-29.
|
[118] |
WIECHA P R, ARBOUET A, GIRARD C,
et al. Deep learning in nano-photonics: inverse design and beyond[J].
Photonics Research, 2021, 9(5): B182-B200.
doi:
10.1364/PRJ.415960
|
[119] |
WANG P, MOHAMMAD N, MENON R. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing[J].
Scientific Reports, 2016, 6: 21545.
doi:
10.1038/srep21545
|
[120] |
盛小航, 周韶东, 席科磊, 等. 基于相变材料的多阶折射率薄膜平板透镜[J]. 光学学报,2022,42(19):1916002.
doi:
10.3788/AOS202242.1916002
SHENG X H, ZHOU SH D, XI K L,
et al. Multi-order refractive index thin-film flat lens based on phase change materials[J].
Acta Optica Sinica, 2022, 42(19): 1916002. (in Chinese)
doi:
10.3788/AOS202242.1916002
|
[121] |
MEEM M, BANERJI S, MAJUMDER A,
et al. Broadband lightweight flat lenses for long-wave infrared imaging[J].
Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(43): 21375-21378.
doi:
10.1073/pnas.1908447116
|
[122] |
BANERJI S, MEEM M, MAJUMDER A,
et al. Imaging with flat optics: metalenses or diffractive lenses?[J].
Optica, 2019, 6(6): 805-810.
doi:
10.1364/OPTICA.6.000805
|
[123] |
WANG F L, GENG G ZH, WANG X Q,
et al. Visible achromatic metalens design based on artificial neural network[J].
Advanced Optical Materials, 2022, 10(3): 2101842.
doi:
10.1002/adom.202101842
|
[124] |
GU Y J, HAO R, LI E P. Independent bifocal metalens design based on deep learning algebra[J].
IEEE Photonics Technology Letters, 2021, 33(8): 403-406.
doi:
10.1109/LPT.2021.3066595
|
[125] |
徐东. 基于深度学习的相位调控型超构表面器件设计[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2021: 5-9.
XU D. Design of phase-modulating metasurface device based on deep learning[D]. Chengdu: University of Chinese Academy of Sciences (The Institute of Optics and Electronics, the Chinese Academy of Sciences), 2021: 5-9. (in Chinese)
|
[126] |
MA W, XU Y H, XIONG B,
et al. Pushing the limits of functionality-multiplexing capability in metasurface design based on statistical machine learning[J].
Advanced Material, 2022, 34(16): 2110022.
doi:
10.1002/adma.202110022
|
[127] |
AN X P, CAO Y, WEI Y X,
et al. Broadband achromatic metalens design based on deep neural networks[J].
Optics Letters, 2021, 46(16): 3881-3884.
doi:
10.1364/OL.427221
|
[128] |
ZHU R CH, QIU T SH, WANG J F,
et al. Phase-to-pattern inverse design paradigm for fast realization of functional metasurfaces via transfer learning[J].
Nature Communications, 2021, 12(1): 2974.
doi:
10.1038/s41467-021-23087-y
|
[129] |
LIPTON Z C. The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery[J].
Queue, 2018, 16(3): 31-57.
doi:
10.1145/3236386.3241340
|
[130] |
SHE A L, ZHANG SH Y, SHIAN S,
et al. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift[J].
Science Advances, 2018, 4(2): eaap9957.
doi:
10.1126/sciadv.aap9957
|
[131] |
SHAPIRA C, YARIV I, ANKRI R,
et al. Effect of optical magnification on the detection of the reduced scattering coefficient in the blue regime: theory and experiments[J].
Optics Express, 2021, 29(14): 22228-22239.
doi:
10.1364/OE.431929
|
[132] |
LIM T Y, PARK S C. Achromatic and athermal lens design by redistributing the element powers on an athermal glass map[J].
Optics Express, 2016, 24(16): 18049-18058.
doi:
10.1364/OE.24.018049
|
[133] |
解娜, 崔庆丰. 基于权重分组的可见光光学系统无热化设计[J]. 光学学报,2018,38(12):1222001.
doi:
10.3788/AOS201838.1222001
XIE N, CUI Q F. Athermalization design of visible light optical system based on grouping by weight[J].
Acta Optica Sinica, 2018, 38(12): 1222001. (in Chinese)
doi:
10.3788/AOS201838.1222001
|
[134] |
ASHTON A. Zoom lens systems[J].
Proceedings of SPIE, 1979, 163: 92-98.
doi:
10.1117/12.956916
|
[135] |
PARR-BURMAN P, GARDAM A. The development of a compact I. R. zoom telescope[J].
Proceedings of SPIE, 1986, 590: 11-17.
doi:
10.1117/12.951960
|
[136] |
EE H S, AGARWAL R. Tunable metasurface and flat optical zoom lens on a stretchable substrate[J].
Nano Letters, 2016, 16(4): 2818-2823.
doi:
10.1021/acs.nanolett.6b00618
|
[137] |
SONG SH CH, MA X L, PU M B,
et al. Actively tunable structural color rendering with tensile substrate[J].
Advanced Optical Materials, 2017, 5(9): 1600829.
doi:
10.1002/adom.201600829
|
[138] |
ARBABI E, ARBABI A, KAMALI S M,
et al. MEMS-tunable dielectric metasurface lens[J].
Nature Communications, 2018, 9(1): 812.
doi:
10.1038/s41467-018-03155-6
|
[139] |
CUI T, BAI B F, SUN H B. Tunable metasurfaces based on active materials[J].
Advanced Functional Materials, 2019, 29(10): 1806692.
doi:
10.1002/adfm.201806692
|
[140] |
KIM J, SEONG J, YANG Y,
et al. Tunable metasurfaces towards versatile metalenses and metaholograms: a review[J].
Advanced Photonics, 2022, 4(2): 024001.
|
[141] |
LININGER A, ZHU A Y, PARK J S,
et al. Optical properties of metasurfaces infiltrated with liquid crystals[J].
Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(34): 20390-20396.
doi:
10.1073/pnas.2006336117
|
[142] |
XU N, HAO Y, JIE K Q,
et al. Electrically-driven zoom metalens based on dynamically controlling the phase of barium titanate (BTO) column antennas[J].
Nanomaterials, 2021, 11(3): 729.
doi:
10.3390/nano11030729
|
[143] |
QIN SH, XU N, HUANG H,
et al. Near-infrared thermally modulated varifocal metalens based on the phase change material Sb2S3[J].
Optics Express, 2021, 29(5): 7925-7934.
doi:
10.1364/OE.420014
|
[144] |
YIN X H, STEINLE T, HUANG L L,
et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces[J].
Light:Science
&Applications, 2017, 6(7): e17016.
|
[145] |
YU ZH N, DESHPANDE P, WU W,
et al. Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography[J].
Applied Physics Letters, 2000, 77(7): 927-929.
doi:
10.1063/1.1288674
|
[146] |
KANG W D, CHU J K, ZENG X W,
et al. Large-area flexible infrared nanowire grid polarizer fabricated using nanoimprint lithography[J].
Applied Optics, 2018, 57(18): 5230-5234.
doi:
10.1364/AO.57.005230
|
[147] |
YAMADA I, FUKUMI K, NISHII J,
et al. Infrared wire-grid polarizer with Y2O3
ceramic substrate[J].
Optics Letters, 2010, 35(18): 3111-3113.
doi:
10.1364/OL.35.003111
|
[148] |
李奥凌, 段辉高, 贾红辉, 等. 中红外波段超构透镜研究进展[J]. 光学 精密工程,2022,30(19):2313-2331.LI A L, DUAN H G, JIA H H,
et al. Research progress of metalenses in mid-infrared band[J].
Optics and Precision Engineering, 2022, 30(19): 2313-2331. (in Chinese)
|
[149] |
PEZZANITI J L, CHENAULT D B. A division of aperture MWIR imaging polarimeter[J].
Proceedings of SPIE, 2005, 5888: 239-250.
|
[150] |
HAO J, WANG Y, ZHOU K,
et al. New diagonal micropolarizer arrays designed by an improved model in Fourier domain[J].
Scientific Reports, 2021, 11(1): 5778.
doi:
10.1038/s41598-021-85103-x
|
[151] |
郝佳, 王燕, 周奎, 等. 基于改进模型的新型对角微偏振阵列设计[J]. 光学 精密工程,2021,29(10):2363-2374.
doi:
10.37188/OPE.2021.0173
HAO J, WANG Y, ZHOU K,
et al. Optimized design model of novel diagonal micropolarizer arrays[J].
Optics and Precision Engineering, 2021, 29(10): 2363-2374. (in Chinese)
doi:
10.37188/OPE.2021.0173
|
[152] |
余晓畅, 赵建村, 虞益挺. 像素级光学滤波-探测集成器件的研究进展[J]. 光学 精密工程,2019,27(5):999-1012.
doi:
10.3788/OPE.20192705.0999
YU X CH, ZHAO J C, YU Y T. Research progress of pixel-level integrated devices for spectral imaging[J].
Optics and Precision Engineering, 2019, 27(5): 999-1012. (in Chinese)
doi:
10.3788/OPE.20192705.0999
|
[153] |
YU X CH, SU Y, SONG X K,
et al. Batch fabrication and compact integration of customized multispectral filter arrays towards snapshot imaging[J].
Optics Express, 2021, 29(19): 30655-30665.
doi:
10.1364/OE.439390
|
[154] |
GAN ZH F, FENG H T, CHEN L Y,
et al. Spatial modulation of nanopattern dimensions by combining interference lithography and grayscale-patterned secondary exposure[J].
Light:Science
&Applications, 2022, 11(1): 89.
|
[155] |
HOU M M, CHEN Y, YI F. Lightweight long-wave infrared camera via a single 5-centimeter-aperture metalens[C].
2022 Conference on Lasers and Electro-Optics (CLEO), IEEE, 2022: 1-2.
|