[1] |
RAMESH R, DAVIS J. 5d time-light transport matrix: What can we reason about scene properties?[EB/OL]. [2008-03-01] [2008-03-01].
http://dspace.mt.edu/handle/1721.1/67888.
|
[2] |
KIRMANI A, HUTCHISON T, DAVIS J,
et al.. Looking around the corner using transient imaging[C].
2009 IEEE 12th International Conference on Computer Vision, IEEE, 2009: 159-166.
|
[3] |
VELTEN A, WILLWACHER T, GUPTA O,
et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging[J].
Nature Communications, 2012, 3(1): 745.
doi:
10.1038/ncomms1747
|
[4] |
MAEDA T, SATAT G, SWEDISH T,
et al. Recent advances in imaging around corners[J].
arXiv preprint arXiv:, 1910, 05613: 2019.
|
[5] |
GENG R X, HU Y, CHEN Y. Recent advances on non-line-of-sight imaging: Conventional physical models, deep learning, and new scenes[J].
APSIPA Transactions on Signal and Information Processing, 2021, 11(1): e1.
|
[6] |
FACCIO D, VELTEN A, WETZSTEIN G. Non-line-of-sight imaging[J].
Nature Reviews Physics, 2020, 2(6): 318-327.
doi:
10.1038/s42254-020-0174-8
|
[7] |
吴术孔, 张宇宁. 被动非视域成像方法的研究进展[J]. 光电子技术,2021,41(2):87-93.WU SH K, ZHANG Y N. Research progress of passive non-line-of-sight imaging methods[J].
Optoelectronic Technology, 2021, 41(2): 87-93. (in Chinese)
|
[8] |
YE J T, HUANG X, LI ZH P,
et al. Compressed sensing for active non-line-of-sight imaging[J].
Optics Express, 2021, 29(2): 1749-1763.
doi:
10.1364/OE.413774
|
[9] |
GUPTA O, WILLWACHER T, VELTEN A,
et al. Reconstruction of hidden 3D shapes using diffuse reflections[J].
Optics Express, 2012, 20(17): 19096-19108.
doi:
10.1364/OE.20.019096
|
[10] |
LAURENZIS M, KLEIN J, BACHER E,
et al. Multiple-return single-photon counting of light in flight and sensing of non-line-of-sight objects at shortwave infrared wavelengths[J].
Optics Letters, 2015, 40(20): 4815-4818.
doi:
10.1364/OL.40.004815
|
[11] |
ARELLANO V, GUTIERREZ D, JARABO A. Fast back-projection for non-line of sight reconstruction[J].
Optics Express, 2017, 25(10): 11574-11583.
doi:
10.1364/OE.25.011574
|
[12] |
NAIK N, ZHAO SH, VELTEN A,
et al.. Single view reflectance capture using multiplexed scattering and time-of-flight imaging[C].
Proceedings of the 2011
SIGGRAPH Asia Conference, Association for Computing Machinery, 2011: 171.
|
[13] |
BUTTAFAVA M, ZEMAN J, TOSI A,
et al. Non-line-of-sight imaging using a time-gated single photon avalanche diode[J].
Optics Express, 2015, 23(16): 20997-21011.
doi:
10.1364/OE.23.020997
|
[14] |
LA MANNA M, KINE F, BREITBACH E,
et al. Error backprojection algorithms for non-line-of-sight imaging[J].
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(7): 1615-1626.
doi:
10.1109/TPAMI.2018.2843363
|
[15] |
JIN CH F, XIE J H, ZHANG S Q,
et al. Reconstruction of multiple non-line-of-sight objects using back projection based on ellipsoid mode decomposition[J].
Optics Express, 2018, 26(16): 20089-20101.
doi:
10.1364/OE.26.020089
|
[16] |
CHAN S, WARBURTON R E, GARIEPY G,
et al. Non-line-of-sight tracking of people at long range[J].
Optics Express, 2017, 25(9): 10109-10117.
doi:
10.1364/OE.25.010109
|
[17] |
MUSARRA G, LYONS A, CONCA E,
et al. Non-line-of-sight three-dimensional imaging with a single-pixel camera[J].
Physical Review Applied, 2019, 12(1): 011002.
doi:
10.1103/PhysRevApplied.12.011002
|
[18] |
YANG W Q, ZHANG CH, JIANG W J,
et al. None-line-of-sight imaging enhanced with spatial multiplexing[J].
Optics Express, 2022, 30(4): 5855-5867.
doi:
10.1364/OE.450238
|
[19] |
HEIDE F, O’TOOLE M, ZANG K,
et al. Non-line-of-sight imaging with partial occluders and surface normals[J].
ACM Transactions on Graphics, 2019, 38(3): 22.
|
[20] |
PEI CH Q, ZHANG A K, DENG Y,
et al. Dynamic non-line-of-sight imaging system based on the optimization of point spread functions[J].
Optics Express, 2021, 29(20): 32349-32364.
doi:
10.1364/OE.439372
|
[21] |
PANDHARKAR R, VELTEN A, BARDAGJY A,
et al.. Estimating motion and size of moving non-line-of-sight objects in cluttered environments[C].
CVPR 2011, IEEE, 2011: 265-272.
|
[22] |
HEIDE F, XIAO L, HEIDRICH W,
et al.. Diffuse mirrors: 3D reconstruction from diffuse indirect illumination using inexpensive time-of-flight sensors[C].
Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2014: 3222-3229.
|
[23] |
TSAI C Y, KUTULAKOS K N, NARASIMHAN S G,
et al.. The geometry of first-returning photons for non-line-of-sight imaging[C].
Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2017: 2336-2344.
|
[24] |
KADAMBI A, ZHAO H, SHI B X,
et al. Occluded imaging with time-of-flight sensors[J].
ACM Transactions on Graphics, 2016, 35(2): 15.
|
[25] |
TSAI C Y, SANKARANARAYANAN A C, GKIOULEKAS I. Beyond volumetric albedo-a surface optimization framework for non-line-of-sight imaging[C].
Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2019: 1545-1555.
|
[26] |
ISERINGHAUSEN J, HULLIN M B. Non-line-of-sight reconstruction using efficient transient rendering[J].
ACM Transactions on Graphics, 2020, 39(1): 8.
|
[27] |
AHN B, DAVE A, VEERARAGHAVAN A,
et al.. Convolutional approximations to the general non-line-of-sight imaging operator[C].
Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, IEEE, 2019: 7888-7898.
|
[28] |
CHEN J H, ZHANG Y, GUO SH SH,
et al. Joint estimation of NLOS building layout and targets via sparsity-driven approach[J].
IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5114513.
|
[29] |
LIU X CH, BAUER S, VELTEN A. Analysis of feature visibility in non-line-of-sight measurements[C].
Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2019: 10132-10140.
|
[30] |
LINDELL D B, WETZSTEIN G, O'TOOLE M. Wave-based non-line-of-sight imaging using fast
f-k
migration[J].
ACM Transactions on Graphics, 2019, 38(4): 116.
|
[31] |
YOUNG S I, LINDELL D B, GIROD B,
et al.. Non-line-of-sight surface reconstruction using the directional light-cone transform[C].
Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2020: 1404-1413.
|
[32] |
O’TOOLE M, LINDELL D B, WETZSTEIN G. Confocal non-line-of-sight imaging based on the light-cone transform[J].
Nature, 2018, 555(7696): 338-341.
doi:
10.1038/nature25489
|
[33] |
ISOGAWA M, CHAN D, YUAN Y,
et al.. Efficient non-line-of-sight imaging from transient sinograms[C].
Proceedings of the 16th European Conference on Computer Vision, Springer, 2020: 193-208.
|
[34] |
WU CH, LIU J J, HUANG X,
et al. Non–line-of-sight imaging over 1.43 km[J].
Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(10): e2024468118.
doi:
10.1073/pnas.2024468118
|
[35] |
WANG B, ZHENG M Y, HAN J J,
et al. Non-line-of-sight imaging with picosecond temporal resolution[J].
Physical Review Letters, 2021, 127(5): 053602.
doi:
10.1103/PhysRevLett.127.053602
|
[36] |
THRAMPOULIDIS C, SHULKIND G, XU F H,
et al. Exploiting occlusion in non-line-of-sight active imaging[J].
IEEE Transactions on Computational Imaging, 2018, 4(3): 419-431.
doi:
10.1109/TCI.2018.2829599
|
[37] |
RAPP J, SAUNDERS C, TACHELLA J,
et al. Seeing around corners with edge-resolved transient imaging[J].
Nature Communications, 2020, 11(1): 5929.
doi:
10.1038/s41467-020-19727-4
|
[38] |
GARIEPY G, TONOLINI F, HENDERSON R,
et al. Detection and tracking of moving objects hidden from view[J].
Nature Photonics, 2016, 10(1): 23-26.
doi:
10.1038/nphoton.2015.234
|
[39] |
KLEIN J, PETERS C, MARTÍN J,
et al. Tracking objects outside the line of sight using 2D intensity images[J].
Scientific Reports, 2016, 6(1): 32491.
doi:
10.1038/srep32491
|
[40] |
LIU X CH, VELTEN A. The role of wigner distribution function in non-line-of-sight imaging[C].
2020 IEEE International Conference on Computational Photography (ICCP), IEEE, 2020: 1-12.
|
[41] |
LIU X CH, GUILLÉN I, LA MANNA M,
et al. Non-line-of-sight imaging using phasor-field virtual wave optics[J].
Nature, 2019, 572(7771): 620-623.
doi:
10.1038/s41586-019-1461-3
|
[42] |
REZA S A, LA MANNA M, BAUER S,
et al. Phasor field waves: A Huygens-like light transport model for non-line-of-sight imaging applications[J].
Optics Express, 2019, 27(20): 29380-29400.
doi:
10.1364/OE.27.029380
|
[43] |
LA MANNA M, NAM J H, REZA S A,
et al. Non-line-of-sight-imaging using dynamic relay surfaces[J].
Optics Express, 2020, 28(4): 5331-5339.
doi:
10.1364/OE.383586
|
[44] |
LIU X CH, BAUER S, VELTEN A. Phasor field diffraction based reconstruction for fast non-line-of-sight imaging systems[J].
Nature Communications, 2020, 11(1): 1645.
doi:
10.1038/s41467-020-15157-4
|
[45] |
XIN SH M, NOUSIAS S, KUTULAKOS K N,
et al.. A theory of fermat paths for non-line-of-sight shape reconstruction[C].
Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2019: 6793-6802.
|
[46] |
SMITH B M, O'TOOLE M, GUPTA M. Tracking multiple objects outside the line of sight using speckle imaging[C].
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2018: 6258-6266.
|
[47] |
SASAKI T, LEGER J R. Light-field reconstruction from scattered light using plenoptic data[J].
Proceedings of SPIE, 2018, 10772: 1077203.
|
[48] |
SAUNDERS C, MURRAY-BRUCE J, GOYAL V K. Computational periscopy with an ordinary digital camera[J].
Nature, 2019, 565(7740): 472-475.
doi:
10.1038/s41586-018-0868-6
|
[49] |
SAUNDERS C, BOSE R, MURRAY-BRUCE J,
et al.. Multi-depth computational periscopy with an ordinary camera[C].
ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2020: 9299-9305.
|
[50] |
BARADAD M, YE V, YEDIDIA A B,
et al.. Inferring light fields from shadows[C].
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2018: 6267-6275.
|
[51] |
BOUMAN K L, YE V, YEDIDIA A B,
et al.. Turning corners into cameras: Principles and methods[C].
Proceedings of the 2017 IEEE International Conference on Computer Vision, IEEE, 2017: 2289-2297.
|
[52] |
SEIDEL S W, MURRAY-BRUCE J, MA Y T,
et al. Two-dimensional non-line-of-sight scene estimation from a single edge occluder[J].
IEEE Transactions on Computational Imaging, 2020, 7: 58-72.
|
[53] |
SEIDEL S W, MA Y T, MURRAY-BRUCE J,
et al.. Corner occluder computational periscopy: estimating a hidden scene from a single photograph[C].
2019 IEEE International Conference on Computational Photography (ICCP), IEEE, 2019: 1-9.
|
[54] |
YEDIDIA A B, BARADAD M, THRAMPOULIDIS C,
et al.. Using unknown occluders to recover hidden scenes[C].
Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2019: 12223-12231.
|
[55] |
MAEDA T, WANG Y Q, RASKAR R,
et al.. Thermal non-line-of-sight imaging[C].
2019 IEEE International Conference on Computational Photography (ICCP), IEEE, 2019: 1-11.
|
[56] |
TANAKA K, MUKAIGAWA Y, KADAMBI A. Polarized non-line-of-sight imaging[C].
Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2020: 2133-2142.
|
[57] |
KATZ O, HEIDMANN P, FINK M,
et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations[J].
Nature Photonics, 2014, 8(10): 784-790.
doi:
10.1038/nphoton.2014.189
|
[58] |
DIVITT S, GARDNER D F, WATNIK A T. Imaging around corners in the mid-infrared using speckle correlations[J].
Optics Express, 2020, 28(8): 11051-11064.
doi:
10.1364/OE.388260
|
[59] |
BOGER-LOMBARD J, KATZ O. Passive optical time-of-flight for non line-of-sight localization[J].
Nature Communications, 2019, 10(1): 3343.
doi:
10.1038/s41467-019-11279-6
|
[60] |
BATARSEH M, SUKHOV S, SHEN Z,
et al. Passive sensing around the corner using spatial coherence[J].
Nature Communications, 2018, 9(1): 3629.
doi:
10.1038/s41467-018-05985-w
|
[61] |
BECKUS A, TAMASAN A, ATIA G K. Multi-modal non-line-of-sight passive imaging[J].
IEEE Transactions on Image Processing, 2019, 28(7): 3372-3382.
doi:
10.1109/TIP.2019.2896517
|
[62] |
CHOPITE J G, HULLIN M B, WAND M,
et al.. Deep non-line-of-sight reconstruction[C].
Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2020: 957-966.
|
[63] |
SATAT G, TANCIK M, GUPTA O,
et al. Object classification through scattering media with deep learning on time resolved measurement[J].
Optics Express, 2017, 25(15): 17466-17479.
doi:
10.1364/OE.25.017466
|
[64] |
FENG X H, GAO L. Ultrafast light field tomography for snapshot transient and non-line-of-sight imaging[J].
Nature Communications, 2021, 12(1): 2179.
doi:
10.1038/s41467-021-22461-0
|
[65] |
CHEN W ZH, DANEAU S, BROSSEAU C,
et al.. Steady-state non-line-of-sight imaging[C].
Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2019: 6783-6792.
|
[66] |
CHANDRAN S, JAYASURIYA S. Adaptive lighting for data-driven non-line-of-sight 3d localization and object identification[C].
Proceedings of the 30th British Machine Vision Conference 2019, BMVC, 2019.
|
[67] |
CAO Y P, LIANG R, YANG J X,
et al. Computational framework for steady-state NLOS localization under changing ambient illumination conditions[J].
Optics Express, 2022, 30(2): 2438-2452.
doi:
10.1364/OE.444080
|
[68] |
CARAMAZZA P, BOCCOLINI A, BUSCHEK D,
et al. Neural network identification of people hidden from view with a single-pixel, single-photon detector[J].
Scientific Reports, 2018, 8(1): 11945.
doi:
10.1038/s41598-018-30390-0
|
[69] |
MUSARRA G, CARAMAZZA P, TURPIN A,
et al. Detection, identification, and tracking of objects hidden from view with neural networks[J].
Proceedings of the SPIE, 2019, 10978: 1097803.
|
[70] |
SU SH CH, HEIDE F, WETZSTEIN G,
et al.. Deep end-to-end time-of-flight imaging[C].
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2018: 6383-6392.
|
[71] |
CHEN Y, QU B, LU X Q. Robust speckle-autocorrelation non-line-of-sight imaging with generative adversarial networks[J].
Proceedings of the SPIE, 2022, 12083: 120830B.
|
[72] |
METZLER C A, HEIDE F, RANGARAJAN P,
et al. Deep-inverse correlography: towards real-time high-resolution non-line-of-sight imaging[J].
Optica, 2020, 7(1): 63-71.
doi:
10.1364/OPTICA.374026
|
[73] |
LEI X, HE L Y, TAN Y X,
et al.. Direct object recognition without line-of-sight using optical coherence[C].
Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2019: 11729-11738.
|
[74] |
AITTALA M, SHARMA P, MURMANN L,
et al. Computational mirrors: blind inverse light transport by deep matrix factorization[J].
Proceedings of the 33rd International Conference on Neural Information Processing Systems,Curran Associates Inc., 2019: 1283.
|
[75] |
SHEN S Y, WANG Z, LIU P,
et al. Non-line-of-sight imaging via neural transient fields[J].
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(7): 2257-2268.
doi:
10.1109/TPAMI.2021.3076062
|
[76] |
CHEN W ZH, WEI F Y, KUTULAKOS K N,
et al. Learned feature embeddings for non-line-of-sight imaging and recognition[J].
ACM Transactions on Graphics, 2020, 39(6): 230.
|
[77] |
MU F ZH, MO S CH, PENG J Y,
et al.. Physics to the rescue: deep non-line-of-sight reconstruction for high-speed imaging[J/OL].
IEEE Transaction on Pattern Analysis and Machine Intelligence, 2022: 1-12.
|
[78] |
GRAU J, PLACK M, HAEHN P,
et al.. Occlusion fields: an implicit representation for non-line-of-sight surface reconstruction[J/OL]. arXiv preprint arXiv: 2203.08657, 2022.
|
[79] |
TANCIK M, SATAT G, RASKAR R. Flash photography for data-driven hidden scene recovery[J/OL]. arXiv preprint arXiv: 1810.11710, 2018.
|
[80] |
GENG R X, HU Y, LU ZH,
et al. Passive non-line-of-sight imaging using optimal transport[J].
IEEE Transactions on Image Processing, 2021, 31: 110-124.
|
[81] |
HE J H, WU SH K, WEI R,
et al. Non-line-of-sight imaging and tracking of moving objects based on deep learning[J].
Optics Express, 2022, 30(10): 16758-16772.
doi:
10.1364/OE.455803
|
[82] |
ISOGAWA M, YUAN Y, O'TOOLE M,
et al.. Optical non-line-of-sight physics-based 3D human pose estimation[C].
Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2020: 7011-7020.
|
[83] |
HE Y, ZHANG D H, HU Y,
et al. . Non-line-of-sight imaging with radio signals[C].
2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), IEEE, 2020: 11-16.
|
[84] |
GALINDO M, MARCO J, O'TOOLE M,
et al.. A dataset for benchmarking time-resolved non-line-of-sight imaging[C].
ACM SIGGRAPH 2019 Posters, Association for Computing Machinery, 2019: 73.
|
[85] |
FIENUP J R. Phase retrieval algorithms: a comparison[J].
Applied Optics, 1982, 21(15): 2758-2769.
doi:
10.1364/AO.21.002758
|
[86] |
NETRAPALLI P, JAIN P, SANGHAVI S. Phase retrieval using alternating minimization[J].
Proceedings of the 26th International Conference on Neural Information Processing Systems,Curran Associates Inc., 2013: 2796-2804.
|
[87] |
KUPYN O, BUDZAN V, MYKHAILYCH M,
et al.. DeblurGAN: blind motion deblurring using conditional adversarial networks[C].
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2018: 8183-8192.
|
[88] |
OU Z, WU J M, YANG Y H,
et al. Computational adaptive optics for high-resolution non-line-of-sight imaging[J].
Optics Express, 2022, 30(3): 4583-4591.
doi:
10.1364/OE.447174
|
[89] |
GROSSMAN E N, SASAKI T, LEGER J R. Passive terahertz non-line-of-sight imaging[J].
IEEE Transactions on Terahertz Science and Technology, 2022, 12(5): 489-498.
doi:
10.1109/TTHZ.2022.3173168
|
[90] |
曹丙花, 张宇盟, 范孟豹, 等. 太赫兹超分辨率成像研究进展[J]. 中国光学,2022,15(3):405-417.
doi:
10.37188/CO.2021-0198
CAO B H, ZHANG Y M, FAN M B,
et al. Research progress of terahertz super-resolution imaging[J].
Chinese Optics, 2022, 15(3): 405-417. (in Chinese)
doi:
10.37188/CO.2021-0198
|
[91] |
陆冬筱, 房文汇, 李玉瑶, 等. 光学相干层析成像技术原理及研究进展[J]. 中国光学,2020,13(5):919-935.
doi:
10.37188/CO.2020-0037
LU D X, FANG W H, LI Y Y,
et al. Optical coherence tomography: principles and recent developments[J].
Chinese Optics, 2020, 13(5): 919-935. (in Chinese)
doi:
10.37188/CO.2020-0037
|