[1] |
PARK J, BRADY D J, ZHENG G A,
et al. Review of bio-optical imaging systems with a high space-bandwidth product[J].
Advanced Photonics, 2021, 3(4): 044001.
|
[2] |
GUSTAFSSON M G L, AGARD D A, SEDAT J W. Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination[J].
Proceedings of SPIE, 2000, 3919: 141-150.
doi:
10.1117/12.384189
|
[3] |
GUSTAFSSON M G L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J].
Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37): 13081-13086.
doi:
10.1073/pnas.0406877102
|
[4] |
ZHENG G A, SHEN CH, JIANG SH W,
et al. Concept, implementations and applications of Fourier ptychography[J].
Nature Reviews Physics, 2021, 3(3): 207-223.
doi:
10.1038/s42254-021-00280-y
|
[5] |
BIAN Z CH, GUO CH F, JIANG SH W,
et al. Autofocusing technologies for whole slide imaging and automated microscopy[J].
Journal of Biophotonics, 2020, 13(12): e202000227.
|
[6] |
TSAI P S, MATEO C, FIELD J J,
et al. Ultra-large field-of-view two-photon microscopy[J].
Optics Express, 2015, 23(11): 13833-13847.
doi:
10.1364/OE.23.013833
|
[7] |
OLIVAS S J, ARIANPOUR A, STAMENOV I,
et al. Image processing for cameras with fiber bundle image relay[J].
Applied Optics, 2015, 54(5): 1124-1137.
doi:
10.1364/AO.54.001124
|
[8] |
GREENBAUM A, LUO W, SU T W,
et al. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy[J].
Nature Methods, 2012, 9(9): 889-895.
doi:
10.1038/nmeth.2114
|
[9] |
FARAHANI N, PARWANI A, PANTANOWITZ L. Whole slide imaging in pathology: advantages, limitations, and emerging perspectives[J].
Pathology and Laboratory Medicine International, 2015, 2015(7): 23-33.
|
[10] |
BARISONI L, LAFATA K J, HEWITT S M,
et al. Digital pathology and computational image analysis in nephropathology[J].
Nature Reviews Nephrology, 2020, 16(11): 669-685.
doi:
10.1038/s41581-020-0321-6
|
[11] |
ZHENG G A, OU X Z, YANG C. 0.5 gigapixel microscopy using a flatbed scanner[J].
Biomedical Optics Express, 2014, 5(1): 1-8.
doi:
10.1364/BOE.5.000001
|
[12] |
SOFRONIEW N J, FLICKINGER D, KING J,
et al. A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging[J].
eLife, 2016, 5: e14472.
doi:
10.7554/eLife.14472
|
[13] |
PACHECO S, WANG CH L, CHAWLA M K,
et al. High resolution, high speed, long working distance, large field of view confocal fluorescence microscope[J].
Scientific Reports, 2017, 7(1): 13349.
doi:
10.1038/s41598-017-13778-2
|
[14] |
FAN J T, SUO J L, WU J M,
et al. Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution[J].
Nature Photonics, 2019, 13(11): 809-816.
doi:
10.1038/s41566-019-0474-7
|
[15] |
WEINSTEIN R S, DESCOUR M R, LIANG CH,
et al. An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study[J].
Human Pathology, 2004, 35(11): 1303-1314.
doi:
10.1016/j.humpath.2004.09.002
|
[16] |
ORTH A, CROZIER K B. High throughput multichannel fluorescence microscopy with microlens arrays[J].
Optics Express, 2014, 22(15): 18101-18112.
doi:
10.1364/OE.22.018101
|
[17] |
SON J, MANDRACCHIA B, JIA SH. Miniaturized modular-array fluorescence microscopy[J].
Biomedical Optics Express, 2020, 11(12): 7221-7235.
doi:
10.1364/BOE.410605
|
[18] |
HARDIE R C, BARNARD K J, BOGNAR J G,
et al. High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system[J].
Optical Engineering, 1998, 37(1): 247-260.
doi:
10.1117/1.601623
|
[19] |
COSKUN A F, SENCAN I, SU T W,
et al. Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects[J].
Optics Express, 2010, 18(10): 10510-10523.
doi:
10.1364/OE.18.010510
|
[20] |
ZHANG Y B, ALEXANDER M, YANG S,
et al. High-throughput screening of encapsulated islets using wide-field lens-free on-chip imaging[J].
ACS Photonics, 2018, 5(6): 2081-2086.
doi:
10.1021/acsphotonics.8b00343
|
[21] |
JIANG SH W, GUO CH F, SONG P M,
et al. Resolution-enhanced parallel coded ptychography for high-throughput optical imaging[J].
ACS Photonics, 2021, 8(11): 3261-3271.
doi:
10.1021/acsphotonics.1c01085
|
[22] |
MCCONNELL G, TRÄGÅRDH J, AMOR R,
et al. A novel optical microscope for imaging large embryos and tissue volumes with sub-cellular resolution throughout[J].
eLife, 2016, 5: e18659.
doi:
10.7554/eLife.18659
|
[23] |
JONKMAN J, BROWN C M, WRIGHT G D,
et al. Tutorial: guidance for quantitative confocal microscopy[J].
Nature Protocols, 2020, 15(5): 1585-1611.
doi:
10.1038/s41596-020-0313-9
|
[24] |
POWER R M, HUISKEN J. A guide to light-sheet fluorescence microscopy for multiscale imaging[J].
Nature Methods, 2017, 14(4): 360-373.
doi:
10.1038/nmeth.4224
|
[25] |
SCHNIETE J, FRANSSEN A, DEMPSTER J,
et al. Fast optical sectioning for widefield fluorescence mesoscopy with the mesolens based on HiLo microscopy[J].
Scientific Reports, 2018, 8(1): 16259.
doi:
10.1038/s41598-018-34516-2
|
[26] |
PERON S P, FREEMAN J, IYER V,
et al. A cellular resolution map of barrel cortex activity during tactile behavior[J].
Neuron, 2015, 86(3): 783-799.
doi:
10.1016/j.neuron.2015.03.027
|
[27] |
SOFRONIEW N J, VLASOV Y A, HIRES S A,
et al. Neural coding in barrel cortex during whisker-guided locomotion[J].
eLife, 2015, 4: 12559.
doi:
10.7554/eLife.12559
|
[28] |
JI N, FREEMAN J, SMITH S L. Technologies for imaging neural activity in large volumes[J].
Nature Neuroscience, 2016, 19(9): 1154-1164.
doi:
10.1038/nn.4358
|
[29] |
LIN P D, JOHNSON R B. Seidel aberration coefficients: an alternative computational method[J].
Optics Express, 2019, 27(14): 19712-19725.
doi:
10.1364/OE.27.019712
|
[30] |
GRAYSON T P. Curved focal plane wide-field-of-view telescope design[J].
Proceedings of SPIE, 2002, 4849: 269-275.
doi:
10.1117/12.460757
|
[31] |
KIM M, LEE G J, CHOI C,
et al. An aquatic-vision-inspired camera based on a monocentric lens and a silicon nanorod photodiode array[J].
Nature Electronics, 2020, 3(9): 546-553.
doi:
10.1038/s41928-020-0429-5
|
[32] |
POTSAID B, BELLOUARD Y, WEN J T. Adaptive Scanning Optical Microscope (ASOM): a multidisciplinary optical microscope design for large field of view and high resolution imaging[J].
Optics Express, 2005, 13(17): 6504-6518.
doi:
10.1364/OPEX.13.006504
|
[33] |
LECOQ J, SAVALL J, VUČINIĆ D,
et al. Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging[J].
Nature Neuroscience, 2014, 17(12): 1825-1829.
doi:
10.1038/nn.3867
|
[34] |
BARSON D, HAMODI A S, SHEN X L,
et al. Simultaneous mesoscopic and two-photon imaging of neuronal activity in cortical circuits[J].
Nature Methods, 2020, 17(1): 107-113.
doi:
10.1038/s41592-019-0625-2
|
[35] |
WU Y C, HAN X F, SU Y J,
et al. Multiview confocal super-resolution microscopy[J].
Nature, 2021, 600(7888): 279-284.
doi:
10.1038/s41586-021-04110-0
|
[36] |
WAGNER M J, KIM T H, KADMON J,
et al. Shared cortex-cerebellum dynamics in the execution and learning of a motor task[J].
Cell, 2019, 177(3): 669-682.e24.
doi:
10.1016/j.cell.2019.02.019
|
[37] |
KOROMPILI G, KANAKARIS G, AMPATIS C,
et al. A portable, optical scanning microsystem for large field of view, high resolution imaging of biological specimens[J].
Sensors and Actuators A:Physical, 2018, 279: 367-375.
doi:
10.1016/j.sna.2018.06.034
|
[38] |
MCCALL B, PIERCE M, GRAVISS E A,
et
al. . Toward a low-cost compact array microscopy platform for detection of tuberculosis[J].
Tuberculosis, 2011, 91 Suppl 1: S54-S60.
|
[39] |
ORTH A, CROZIER K. Gigapixel fluorescence microscopy with a water immersion microlens array[J].
Optics Express, 2013, 21(2): 2361-2368.
doi:
10.1364/OE.21.002361
|
[40] |
ORTH A, TOMASZEWSKI M J, GHOSH R N,
et al. Gigapixel multispectral microscopy[J].
Optica, 2015, 2(7): 654-662.
doi:
10.1364/OPTICA.2.000654
|
[41] |
CUI X Q, LEE L M, HENG X,
et al. Lensless high-resolution on-chip optofluidic microscopes for
Caenorhabditis elegans
and cell imaging[J].
Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(31): 10670-10675.
doi:
10.1073/pnas.0804612105
|
[42] |
LEE L M, CUI X Q, YANG C H. The application of on-chip optofluidic microscopy for imaging
Giardia lamblia
trophozoites and cysts[J].
Biomedical Microdevices, 2009, 11(5): 951-958.
doi:
10.1007/s10544-009-9312-x
|
[43] |
LEE S A, OU X Z, LEE J E,
et al. Chip-scale fluorescence microscope based on a silo-filter complementary metal-oxide semiconductor image sensor[J].
Optics Letters, 2013, 38(11): 1817-1819.
doi:
10.1364/OL.38.001817
|
[44] |
SASAGAWA K, OHTA Y, KAWAHARA M,
et al. Wide field-of-view lensless fluorescence imaging device with hybrid bandpass emission filter[J].
AIP Advances, 2019, 9(3): 035108.
doi:
10.1063/1.5083152
|
[45] |
GUO CH, ZHANG F L, ZHANG X Q,
et al. Lensfree super-resolved imaging based on adaptive Wiener filter and guided phase retrieval algorithm[J].
Journal of Optics, 2020, 22(5): 055703.
doi:
10.1088/2040-8986/ab8287
|
[46] |
JIANG SH W, BIAN Z CH, ZHU J K,
et al. High-throughput and field-portable ptychographic lensless on-chip microscopy based on translated pattern modulation[J].
Proceedings of SPIE, 2020, 11250: 112500E.
|
[47] |
OZCAN A, MCLEOD E. Lensless imaging and sensing[J].
Annual Review of Biomedical Engineering, 2016, 18: 77-102.
doi:
10.1146/annurev-bioeng-092515-010849
|
[48] |
HAN CH, PANG SH, BOWER D V,
et al. Wide field-of-view on-chip talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator[J].
Analytical Chemistry, 2013, 85(4): 2356-2360.
doi:
10.1021/ac303356v
|
[49] |
FARSIU S, ROBINSON M D, ELAD M,
et al. Fast and robust multiframe super resolution[J].
IEEE Transactions on Image Processing, 2004, 13(10): 1327-1344.
doi:
10.1109/TIP.2004.834669
|
[50] |
GREENBAUM A, LUO W, KHADEMHOSSEINIEH B,
et al. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy[J].
Scientific Reports, 2013, 3(1): 1717.
doi:
10.1038/srep01717
|
[51] |
WU X J, SUN J S, ZHANG J L,
et al. Wavelength-scanning lensfree on-chip microscopy for wide-field pixel-super-resolved quantitative phase imaging[J].
Optics Letters, 2021, 46(9): 2023-2026.
doi:
10.1364/OL.421869
|
[52] |
ELAD M, HEL-OR Y. A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur[J].
IEEE Transactions on Image Processing, 2001, 10(8): 1187-1193.
doi:
10.1109/83.935034
|
[53] |
JIANG SH W, GUO CH F, HU P,
et al. High-throughput lensless whole slide imaging via continuous height-varying modulation of a tilted sensor[J].
Optics Letters, 2021, 46(20): 5212-5215.
doi:
10.1364/OL.437832
|
[54] |
VAN PUTTEN E G, AKBULUT D, BERTOLOTTI J,
et al. Scattering lens resolves sub-100 nm structures with visible light[J].
Physical Review Letters, 2011, 106(19): 193905.
doi:
10.1103/PhysRevLett.106.193905
|
[55] |
CHOI Y, YOON C, KIM M,
et al. Optical imaging with the use of a scattering lens[J].
IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(2): 6800213.
|
[56] |
PARK J H, PARK C, YU H,
et al. Subwavelength light focusing using random nanoparticles[J].
Nature Photonics, 2013, 7(6): 454-458.
doi:
10.1038/nphoton.2013.95
|
[57] |
LI ZH, TAPHANEL M, LÄNGLE T,
et al. Confocal fluorescence microscopy with high-NA diffractive lens arrays[J].
Applied Optics, 2022, 61(3): A37-A42.
doi:
10.1364/AO.442084
|
[58] |
WANG R K K. Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues[J].
Physics in Medicine
&Biology, 2002, 47(13): 2281-2299.
|
[59] |
WANG J, ZHANG Y, XU T H,
et al. An innovative transparent cranial window based on skull optical clearing[J].
Laser Physics Letters, 2012, 9(6): 469-473.
doi:
10.7452/lapl.201210017
|
[60] |
CUNHA R, LAFETA L, FONSECA E A,
et al. Multimodal microscopy for characterization of amyloid-β plaques biomarkers in animal model of Alzheimer's disease[J].
Analyst, 2021, 146(10): 2945-2954.
|
[61] |
JIANG L W, WANG X F, WU Z Y,
et al. Label-free imaging of brain and brain tumor specimens with combined two-photon excited fluorescence and second harmonic generation microscopy[J].
Laser Physics Letters, 2017, 14(10): 105401.
doi:
10.1088/1612-202X/aa7c9a
|
[62] |
TARANDA J, TURCAN S. 3D whole-brain imaging approaches to study brain tumors[J].
Cancers, 2021, 13(8): 1897.
doi:
10.3390/cancers13081897
|
[63] |
CALOVI S, SORIA F N, TØNNESEN J. Super-resolution STED microscopy in live brain tissue[J].
Neurobiology of Disease, 2021, 156: 105420.
doi:
10.1016/j.nbd.2021.105420
|
[64] |
LI A N, GONG H, ZHANG B,
et al. Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain[J].
Science, 2010, 330(6009): 1404-1408.
doi:
10.1126/science.1191776
|
[65] |
RAGAN T, KADIRI L R, VENKATARAJU K U,
et al. Serial two-photon tomography for automated
ex vivo
mouse brain imaging[J].
Nature Methods, 2012, 9(3): 255-258.
doi:
10.1038/nmeth.1854
|
[66] |
TSAI P S, FRIEDMAN B, IFARRAGUERRI A I,
et al. All-optical histology using ultrashort laser pulses[J].
Neuron, 2003, 39(1): 27-41.
doi:
10.1016/S0896-6273(03)00370-2
|
[67] |
LIN H H, LAI J S Y, CHIN A L,
et al. A map of olfactory representation in the
Drosophila
mushroom body[J].
Cell, 2007, 128(6): 1205-1217.
doi:
10.1016/j.cell.2007.03.006
|
[68] |
ZHU D, LARIN K V, LUO Q M,
et al. Recent progress in tissue optical clearing[J].
Laser
&Photonics Reviews, 2013, 7(5): 732-757.
|
[69] |
UEDA H R, ERTÜRK A, CHUNG K,
et al. Tissue clearing and its applications in neuroscience[J].
Nature Reviews Neuroscience, 2020, 21(2): 61-79.
doi:
10.1038/s41583-019-0250-1
|
[70] |
HAMA H, KUROKAWA H, KAWANO H,
et al. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain[J].
Nature Neuroscience, 2011, 14(11): 1481-1488.
doi:
10.1038/nn.2928
|
[71] |
ERTÜRK A, MAUCH C P, HELLAL F,
et al. Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury[J].
Nature Medicine, 2012, 18(1): 166-171.
doi:
10.1038/nm.2600
|
[72] |
ZHU D, WANG J, ZHI ZH W,
et al. Imaging dermal blood flow through the intact rat skin with an optical clearing method[J].
Journal of Biomedical Optics, 2010, 15(2): 026008.
doi:
10.1117/1.3369739
|
[73] |
ZHONG H Q, GUO ZH Y, WEI H J,
et al. In vitro study of ultrasound and different-concentration glycerol-induced changes in human skin optical attenuation assessed with optical coherence tomography[J].
Journal of Biomedical Optics, 2010, 15(3): 036012.
doi:
10.1117/1.3432750
|
[74] |
XIA F, GEVERS M, FOGNINI A,
et al. Short-wave infrared confocal fluorescence imaging of deep mouse brain with a superconducting nanowire single-photon detector[J].
ACS Photonics, 2021, 8(9): 2800-2810.
doi:
10.1021/acsphotonics.1c01018
|
[75] |
RYU J, KANG U, KIM J,
et al. Real-time visualization of two-photon fluorescence lifetime imaging microscopy using a wavelength-tunable femtosecond pulsed laser[J].
Biomedical Optics Express, 2018, 9(7): 3449-3463.
doi:
10.1364/BOE.9.003449
|
[76] |
CHENG H, TONG SH, DENG X Q,
et al. Deep-brain 2-photon fluorescence microscopy
in vivo
excited at the 1700 nm window[J].
Optics Letters, 2019, 44(17): 4432-4435.
doi:
10.1364/OL.44.004432
|
[77] |
CHENG H, TONG SH, DENG X Q,
et al.
In vivo
deep-brain imaging of microglia enabled by three-photon fluorescence microscopy[J].
Optics Letters, 2020, 45(18): 5271-5274.
doi:
10.1364/OL.408329
|
[78] |
LIU M X, GU B B, WU W B,
et al. Binary organic nanoparticles with bright aggregation-induced emission for three-photon brain vascular imaging[J].
Chemistry of Materials, 2020, 32(15): 6437-6443.
doi:
10.1021/acs.chemmater.0c01577
|
[79] |
LIU W, ZHANG Y H, QI J,
et al. NIR-II excitation and NIR-I emission based two-photon fluorescence lifetime microscopic imaging using aggregation-induced emission dots[J].
Chemical Research in Chinese Universities, 2021, 37(1): 171-176.
doi:
10.1007/s40242-021-0405-2
|
[80] |
MAYERICH D, ABBOTT L, MCCORMICK B. Knife-edge scanning microscopy for imaging and reconstruction of three-dimensional anatomical structures of the mouse brain[J].
Journal of Microscopy, 2008, 231(1): 134-143.
doi:
10.1111/j.1365-2818.2008.02024.x
|
[81] |
SANCATALDO G, GAVRYUSEV V, DE VITO G,
et al. Flexible multi-beam light-sheet fluorescence microscope for live imaging without striping artifacts[J].
Frontiers in Neuroanatomy, 2019, 13: 7.
doi:
10.3389/fnana.2019.00007
|
[82] |
WANG F F, WAN H, MA ZH R,
et al. Light-sheet microscopy in the near-infrared II window[J].
Nature Methods, 2019, 16(6): 545-552.
doi:
10.1038/s41592-019-0398-7
|
[83] |
GELMAN H, GRUEBELE M. Fast protein folding kinetics[J].
Quarterly Reviews of Biophysics, 2014, 47(2): 95-142.
doi:
10.1017/S003358351400002X
|
[84] |
COPOS C, BANNISH B, GASIOR K,
et
al. . Connecting actin polymer dynamics across multiple scales[M]//SEGAL R, SHTYLLA B, SINDI S. Using Mathematics to Understand Biological Complexity: From Cells to Populations. Cham: Springer, 2021: 7-33.
|
[85] |
LIU T L, UPADHYAYULA S, MILKIE D E,
et al. Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms[J].
Science, 2018, 360(6386): eaaq1392.
doi:
10.1126/science.aaq1392
|
[86] |
LI T CH, FU T M, WONG K K L,
et al. Cellular bases of olfactory circuit assembly revealed by systematic time-lapse imaging[J].
Cell, 2021, 184(20): 5107-5121.e14.
doi:
10.1016/j.cell.2021.08.030
|
[87] |
HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J].
Optics Letters, 1994, 19(11): 780-782.
doi:
10.1364/OL.19.000780
|
[88] |
RUST M J, BATES M, ZHUANG X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J].
Nature Methods, 2006, 3(10): 793-796.
doi:
10.1038/nmeth929
|
[89] |
BETZIG E, PATTERSON G H, SOUGRAT R,
et al. Imaging intracellular fluorescent proteins at nanometer resolution[J].
Science, 2006, 313(5793): 1642-1645.
doi:
10.1126/science.1127344
|
[90] |
GUSTAFSSON M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Short communication[J].
Journal of Microscopy, 2000, 198(2): 82-87.
doi:
10.1046/j.1365-2818.2000.00710.x
|
[91] |
DIEKMANN R, HELLE Ø I, ØIE C I,
et al. Chip-based wide field-of-view nanoscopy[J].
Nature Photonics, 2017, 11(5): 322-328.
doi:
10.1038/nphoton.2017.55
|
[92] |
ARCHETTI A, GLUSHKOV E, SIEBEN C,
et al. Waveguide-PAINT offers an open platform for large field-of-view super-resolution imaging[J].
Nature Communications, 2019, 10(1): 1267.
doi:
10.1038/s41467-019-09247-1
|
[93] |
HELLE Ø I, COUCHERON D A, TINGUELY J C,
et al. Nanoscopy on-a-chip: super-resolution imaging on the millimeter scale[J].
Optics Express, 2019, 27(5): 6700-6710.
doi:
10.1364/OE.27.006700
|
[94] |
CHEN B CH, LEGANT W R, WANG K,
et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution[J].
Science, 2014, 346(6208): 1257998.
doi:
10.1126/science.1257998
|
[95] |
GAO R X, ASANO S M, UPADHYAYULA S,
et al. Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution[J].
Science, 2019, 363(6424): eaau8302.
doi:
10.1126/science.aau8302
|
[96] |
ZHAO Z Y, XIN B, LI L CH,
et al. High-power homogeneous illumination for super-resolution localization microscopy with large field-of-view[J].
Optics Express, 2017, 25(12): 13382-13395.
doi:
10.1364/OE.25.013382
|
[97] |
MAHECIC D, GAMBAROTTO D, DOUGLASS K M,
et al. Homogeneous multifocal excitation for high-throughput super-resolution imaging[J].
Nature Methods, 2020, 17(7): 726-733.
doi:
10.1038/s41592-020-0859-z
|
[98] |
MAU A, FRIEDL K, LETERRIER C,
et al. Fast widefield scan provides tunable and uniform illumination optimizing super-resolution microscopy on large fields[J].
Nature Communications, 2021, 12(1): 3077.
doi:
10.1038/s41467-021-23405-4
|
[99] |
CHMYROV A, LEUTENEGGER M, GROTJOHANN T,
et al. Achromatic light patterning and improved image reconstruction for parallelized RESOLFT nanoscopy[J].
Scientific Reports, 2017, 7: 44619.
doi:
10.1038/srep44619
|
[100] |
CHEN F, TILLBERG P W, BOYDEN E S. Expansion microscopy[J].
Science, 2015, 347(6221): 543-548.
doi:
10.1126/science.1260088
|
[101] |
TILLBERG P W, CHEN F, PIATKEVICH K D,
et al. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies[J].
Nature Biotechnology, 2016, 34(9): 987-992.
doi:
10.1038/nbt.3625
|
[102] |
FREIFELD L, ODSTRCIL I, FÖRSTER D,
et al. Expansion microscopy of zebrafish for neuroscience and developmental biology studies[J].
Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(50): E10799-E10808.
|
[103] |
GUO F, HOLLA M, DÍAZ M M,
et al. A circadian output circuit controls sleep-wake arousal in
Drosophila[J].
Neuron, 2018, 100(3): 624-635.e4.
doi:
10.1016/j.neuron.2018.09.002
|
[104] |
JIN T, GUO H, YAO L,
et al. Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms[J].
Journal of Biophotonics, 2018, 11(4): e201700250.
doi:
10.1002/jbio.201700250
|
[105] |
QIN W, JIN T, GUO H,
et al. Large-field-of-view optical resolution photoacoustic microscopy[J].
Optics Express, 2018, 26(4): 4271-4278.
doi:
10.1364/OE.26.004271
|
[106] |
MCNABB R P, POLANS J, KELLER B,
et al. Wide-field whole eye OCT system with demonstration of quantitative retinal curvature estimation[J].
Biomedical Optics Express, 2019, 10(1): 338-355.
doi:
10.1364/BOE.10.000338
|
[107] |
RECHER G, NASSOY P, BADON A. Remote scanning for ultra-large field of view in wide-field microscopy and full-field OCT[J].
Biomedical Optics Express, 2020, 11(5): 2578-2590.
doi:
10.1364/BOE.383329
|
[108] |
RON A, KALVA S K, PERIYASAMY V,
et al. Flash scanning volumetric optoacoustic tomography for high resolution whole-body tracking of nanoagent kinetics and biodistribution[J].
Laser
&Photonics Reviews, 2021, 15(3): 2000484.
|