[1] |
何国金, 李克鲁, 胡德永, 等. 多卫星遥感数据的信息融合: 理论、方法与实践[J]. 中国图象图形学报,1999,4(9):744-750.HE G J, LI K L, HU D Y,
et al. Information fusion of multisensor satellite remote sensing data: theory, methodology and experiment[J].
Journal of Image and Graphics, 1999, 4(9): 744-750. (in Chinese)
|
[2] |
HUANG J P, YU H P, GUAN X D,
et al. Accelerated dryland expansion under climate change[J].
Nature Climate Change, 2016, 6(2): 166-171.
doi:
10.1038/nclimate2837
|
[3] |
FAN Y D, WEN Q, CHEN SH R. Engineering survey of the environment and disaster monitoring and forecasting small satellite constellation[J].
International Journal of Digital Earth, 2012, 5(3): 217-227.
doi:
10.1080/17538947.2011.648540
|
[4] |
ZHANG P, HU X P, LU Q F,
et al. FY-3E: the first operational meteorological satellite mission in an early morning orbit[J].
Advances in Atmospheric Sciences, 2022, 39(1): 1-8.
doi:
10.1007/s00376-021-1304-7
|
[5] |
MARTIN S.
An Introduction to Ocean Remote Sensing[J].
Oceanography, 2005, 18(3): 86-89.
doi:
10.5670/oceanog.2005.36
|
[6] |
裴照宇, 侯军, 王琼. 光学技术在中国月球和深空探测中的应用(特约)[J]. 红外与激光工程,2020,49(5):20201002.
doi:
10.3788/irla.2_invited-peizhaoyu
PEI ZH Y, HOU J, WANG Q. Applications of optical technology in lunar and deep space exploration in China (Invited)[J].
Infrared and Laser Engineering, 2020, 49(5): 20201002. (in Chinese)
doi:
10.3788/irla.2_invited-peizhaoyu
|
[7] |
曲宏松, 金光, 张叶. “Next View计划”与光学遥感卫星的发展趋势[J]. 中国光学与应用光学,2009,2(6):467-476.QU H S, JIN G, ZHANG Y. NextView program and progress in optical remote sensing satellites[J].
Chinese Journal of Optics and Applied Optics, 2009, 2(6): 467-476. (in Chinese)
|
[8] |
BRANDTBERG T, WARNER T.
High-spatial-resolution remote sensing[M]//SHAO G F, REYNOLDS K M. Computer Applications in Sustainable Forest Management. Netherlands: Springer, 2006: 19-41.
|
[9] |
BENEDIKTSSON J A, CHANUSSOT J, MOON W M. Very high-resolution remote sensing: challenges and opportunities [Point of View][J].
Proceedings of the IEEE, 2012, 100(6): 1907-1910.
doi:
10.1109/JPROC.2012.2190811
|
[10] |
AKUMU C E, AMADI E O, DENNIS S. Application of drone and WorldView-4 satellite data in mapping and monitoring grazing land cover and pasture quality: pre- and post-flooding[J].
Land, 2021, 10(3): 321.
doi:
10.3390/land10030321
|
[11] |
TU T M, HUANG P S, HUNG C L,
et al. A fast intensity–hue–saturation fusion technique with spectral adjustment for IKONOS imagery[J].
IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 309-312.
doi:
10.1109/LGRS.2004.834804
|
[12] |
AGUILAR M A, DEL MAR SALDAÑA M, AGUILAR F J,
et al. Assessing geometric accuracy of the orthorectification process from GeoEye-1 and WorldView-2 panchromatic images[J].
International Journal of Applied Earth Observation and Geoinformation, 2013, 21: 427-435.
doi:
10.1016/j.jag.2012.06.004
|
[13] |
ASADZADEH S, DE SOUZA FILHO C R. Investigating the capability of WorldView-3 superspectral data for direct hydrocarbon detection[J].
Remote Sensing of Environment, 2016, 173: 162-173.
doi:
10.1016/j.rse.2015.11.030
|
[14] |
NGUYEN T T H, PHAM T A, LUONG T P. Estimate tropical forest stand volume using SPOT 5 satellite image[J].
IOP Conference Series:Earth and Environmental Science, 2021, 652(1): 012016.
doi:
10.1088/1755-1315/652/1/012016
|
[15] |
曹福成. 高分系列遥感卫星布设中国太空“慧眼”——我国高分专项建设回眸[J]. 中国军转民,2015(1):28-33.
doi:
10.3969/j.issn.1008-5874.2015.01.006
CAO F CH. The high-score series of remote sensing satellites is deployed in China’s Space “Wise Eye” - a review of China's high-score special construction[J].
Defense Industry Conversion in China, 2015(1): 28-33. (in Chinese)
doi:
10.3969/j.issn.1008-5874.2015.01.006
|
[16] |
曾文, 林辉, 李新宇, 等. 基于高景一号遥感影像的林地信息提取[J]. 中南林业科技大学学报,2020,40(7):32-40.
doi:
10.14067/j.cnki.1673-923x.2020.07.005
ZENG W, LIN H, LI X Y,
et al. Study on extracting forest information based on SV-1 image[J].
Journal of Central South University of Forestry
&Technology, 2020, 40(7): 32-40. (in Chinese)
doi:
10.14067/j.cnki.1673-923x.2020.07.005
|
[17] |
张召才. 吉林一号卫星组星[J]. 卫星应用,2015(11):1.ZHANG ZH C. Jilin No. 1 satellite group[J].
Satellite Application, 2015(11): 1. (in Chinese)
|
[18] |
CASOLINO M, PICOZZA P. Launch and commissioning of the PAMELA experiment on board the resurs-DK1 satellite[J].
Advances in Space Research, 2008, 41(12): 2064-2070.
doi:
10.1016/j.asr.2007.06.062
|
[19] |
KRISHNA B G, SRINIVASAN T P, SRIVASTAVA P K. An integrated approach for topographical mapping from space using Cartosat-1 and Cartosat-2 imagery[C]//ISPRS Congress 2008. 2008.
|
[20] |
TU T M, HSU C L, TU P Y,
et al. An adjustable pan-sharpening approach for IKONOS/QuickBird/GeoEye-1/WorldView-2 imagery[J].
IEEE Journal Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(1): 125-134.
doi:
10.1109/JSTARS.2011.2181827
|
[21] |
MURTHY K, SHEARN M, SMILEY B D,
et al. SkySat-1: Very high-resolution imagery from a small satellite[J].
Proceedings of SPIE, 2014, 9241: 92411e.
|
[22] |
LEVIN N, JOHANSEN K, HACKER J M,
et al. A New source for high spatial resolution night time images —— the EROS-B Commercial Satellite[J].
Remote Sensing of Environment, 2014, 149: 1-12.
doi:
10.1016/j.rse.2014.03.019
|
[23] |
BEN-DAVID A. Ofeq-7 bolsters Israel's intelligence coverage[J].
Jane's Defence Weekly, 2007, 44(25): 17.
|
[24] |
LIU J F, WANG H J, SUN D W,
et al. On-orbit adjustment and compensation for large aperture optical system[J].
Acta Optica Sinica,34(3):, 0322, 005: 2014.
|
[25] |
PANG ZH H, FAN X W, CHEN Q F,
et al. Influence of surface-profile error of larger mirror on aberrations characteristics of optical system[J].
Acta Optica Sinica, 2013, 33(4): 0422002.
doi:
10.3788/AOS201333.0422002
|
[26] |
LIU SH T, HU R, LI Q H,
et al. Topology optimization-based lightweight primary mirror design of a large-aperture space telescope[J].
Applied Optics, 2014, 53(35): 8318-8325.
doi:
10.1364/AO.53.008318
|
[27] |
HU R, LIU SH T, LI Q H. Topology-optimization-based design method of flexures for mounting the primary mirror of a large-aperture space telescope[J].
Applied Optics, 2017, 56(15): 4551-4560.
doi:
10.1364/AO.56.004551
|
[28] |
YI K, MA P, QIU H,
et al. Progress on large aperture transport mirrors[J].
Optics and Precision Engineering, 2016, 24(12): 2902-2907.
doi:
10.3788/OPE.20162412.2902
|
[29] |
常君磊, 李庆林, 李富强, 等. 航天光学遥感探测器滤光片环境考核方法[J]. 航天器环境工程,2018,35(1):87-91.
doi:
10.3969/j.issn.1673-1379.2018.01.016
CHANG J L, LI Q L, LI F Q,
et al. Environmental adaptability assessment of the filter of space optical remote sensor detector[J].
Spacecraft Environment Engineering, 2018, 35(1): 87-91. (in Chinese)
doi:
10.3969/j.issn.1673-1379.2018.01.016
|
[30] |
ZHENG D H, CHEN L, ZHU W H. Research on adjusting and testing of off-axis paraboloid mirror with large aperture[J].
Proceedings of SPIE, 2016, 9684: 968406.
|
[31] |
MATHEW L M, DEEPAK B P, SABU B. Design and analysis of a metallic Ogive payload fairing for a new generation launch vehicle[J].
IOSR Journal of Mechanical and Civil Engineering, 2016, 13(5): 99-103.
|
[32] |
GUO J, GONG D P, ZHU L,
et al. Calculation of overlapping pixels in interleaving assembly of CCD focal plane of mapping camera[J].
Optics and Precision Engineering, 2013, 21(5): 1251-1257.
doi:
10.3788/OPE.20132105.1251
|
[33] |
ZHANG Y L, LU B, ZHANG W T,
et al. A new method for detecting moving objects in video[J].
Journal of University of Electronic Science and Technology of China, 2019, 48(1): 46-52.
|
[34] |
LIN H B, BO Y CH, WANG J D,
et al. Research progress in super-resolution mapping from remotely sensed imagery[J].
Journal of Image and Graphics, 2011, 16(4): 495-502.
|
[35] |
SICA L. Effects of nonredundance on a synthetic-aperture imaging system[J].
Journal of the Optical Society of America A, 1993, 10(4): 567-572.
doi:
10.1364/JOSAA.10.000567
|
[36] |
MACKENZIE C, SWEETMAN B. Snakes and lasers[J].
Aviation Week & Space Technology, 2012.
|
[37] |
MATTHEW F, MATTHEW R, DOUGLAS E,
et al. The future of Earth observation in hydrology[J].
Hydrology and Earth System Sciences, 2017, 21(7): 3879-3914.
|
[38] |
吴同舟, 王浩, 周峰, 等. 基于月球观测的“高分四号”卫星相机在轨MTF测试[J]. 航天返回与遥感,2019,40(1):41-49.
doi:
10.3969/j.issn.1009-8518.2019.01.005
WU T ZH, WANG H, ZHOU F,
et al. The Lunar trail of GF-4 satellite and on-orbit knife-edge measurements of MTF[J].
Spacecraft Recovery
&Remote Sensing, 2019, 40(1): 41-49. (in Chinese)
doi:
10.3969/j.issn.1009-8518.2019.01.005
|
[39] |
童旭东. 中国高分辨率对地观测系统重大专项建设进展[J]. 遥感学报,2016,5:775-780.TONG X D. Progress in the construction of chinese major special project on high-resolution earth observation system[J].
Journal of Remote Sensing, 2016, 5: 775-780. (in Chinese)
|
[40] |
郭疆. 碳化硅大口径空间反射镜设计与制造研究[D]. 长春: 吉林大学, 2019.
GUO J. Research on design and manufacturing of large aperture space mirror of silicon carbide[D]. Changchun: Jilin University, 2019.
|
[41] |
邵梦旗. 空间相机光机结构集成优化设计方法研究[D]. 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021. DOI:
10.27522/d.cnki.gkcgs.2021.000079.SHAO M Q, Space camera optical structure integration optimization design method research[D]. University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics Physics, Chinese Academy of Sciences), 2021. DOI:
10.27522/d.cnki.gkcgs.2021.000079.
|
[42] |
汪逸群, 王龙, 郭万存, 等. 空间多用途双面反射镜的设计与制备[J]. 光学学报,2015,35(4):0428001.
doi:
10.3788/AOS201535.0428001
WANG Y Q, WANG L, GUO W C,
et al. Design and manufacture of space all-purpose double-faced reflective mirror[J].
Acta Optica Sinica, 2015, 35(4): 0428001. (in Chinese)
doi:
10.3788/AOS201535.0428001
|
[43] |
JAHNS J J. TURUNEN, F. W (eds. ),
Diffractive Optics for Industrial and Commercial Applications[M], Berlin: Akademie Verlag, , Germany, 1997: 426
|
[44] |
MADSEN C K. Linking diffractive and geometrical optics surface scattering at a fundamental level[J].
Optics and Photonics Journal, 2022, 12(1): 1-17.
doi:
10.4236/opj.2022.121001
|
[45] |
DUFRESNE E R, GRIER D G. Optical tweezer arrays and optical substrates created with diffractive optics[J].
Review of Scientific Instruments, 1998, 69(5): 1974-1977.
doi:
10.1063/1.1148883
|
[46] |
ATCHESON P D, STEWART C, DOMBER J,
et al. MOIRE: Initial demonstration of a transmissive diffractive membrane optic for large lightweight optical telescopes[J].
Proceedings of SPIE, 2012, 8442: 844221.
doi:
10.1117/12.925413
|
[47] |
ATCHESON P, DOMBER J, WHITEAKER K,
et al. MOIRE: Ground demonstration of a large aperture diffractive transmissive telescope[J].
Proceedings of SPIE, 2014, 9143: 91431W.
|
[48] |
赵新龙, 成志铎, 刘君. 复杂战场环境导弹发射装置隐身防护技术研究[J]. 现代防御技术,2016(1):146-150,160.ZHAO X L, CHENG Z D, LIU J. Research on stealth protection technology for missile launchers in complex battlefield environments[J].
Modern Defence Technology, 2016(1): 146-150,160. (in Chinese)
|
[49] |
ATCHESON PAUL D. MOIRE: initial demonstration of a transmissive diffractive membrane optic for large lightweight optical telescopes[J]. 2012, 8442 : 844221-844221-14.
|
[50] |
DOMBER J L, PAUL D A, JEFF K. MOIRE: ground test bed results for a large membrane telescope[C]. Spacecraft Structures Conference. 2014.
|
[51] |
王若秋.基于衍射成像系统的薄膜元件关键技术研究[D]. 中国科学院长春光学精密机械与物理研究所, 2017.WANG R Q. Key Technology research on thin film components based on diffraction imaging system[D]. University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics Physics, Chinese Academy of Sciences), 2017.
|
[52] |
DOMBER J L, ATCHESON P D, KOMMERS J. MOIRE: Ground test bed results for a large membrane telescope[C]//Spacecraft Structures Conference. 2014.
|
[53] |
TANDY W D, COPP T, CAMPBELL L,
et al.. MOIRE gossamer space telescope-membrane analysis[C]//Spacecraft Structures Conference. 2014.
|
[54] |
STAGUHN J G, BENFORD D J, ALLEN C A,
et al. Instrument performance of GISMO, a 2 millimeter tes bolometer camera used at the IRAM 30 m telescope[J].
Proceedings of SPIE, 2008, 7020: 702004.
doi:
10.1117/12.789764
|
[55] |
郑耀辉. 空间薄膜衍射望远镜主镜展开技术研究[D]. 中国科学院大学(中国科学院西安光学精密机械研究所), 2016.ZHENG Y H. Space thin-film diffraction telescope primary mirror unfolding technique study[D]. Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2016.
|
[56] |
CATALANO O. Extreme Universe Space Observatory-EUSO: An innovative project for the detection of extreme energy cosmic rays and neutrinos[J].
Il Nuovo Cimento C, 2001, 24(3): 445-469.
|
[57] |
SANTANGELO A, PETROLINI A. Observing ultra-high-energy cosmic particles from space:
s-EUSO, super-extreme universe space observatory mission[J].
New Journal of Physics, 2009, 11(6): 065010.
doi:
10.1088/1367-2630/11/6/065010
|
[58] |
PETROLINI A. The extreme universe space observatory (EUSO) instrument[J].
Nuclear Physics B - Proceedings Supplements, 2002, 113(1-3): 329-336.
doi:
10.1016/S0920-5632(02)01860-1
|
[59] |
TAKIZAWA Y, EBISUZAKI T, KAWASAKI Y,
et al. JEM-EUSO: Extreme universe space observatory on JEM/ISS[J].
Nuclear Physics B-Proceedings Supplements, 2007, 166: 72-76.
doi:
10.1016/j.nuclphysbps.2006.12.007
|
[60] |
ANDERSEN G, ASMOLOV O, DEARBORN M E,
et al. FalconSAT-7: a membrane photon sieve CubeSat solar telescope[J].
Proceedings of SPIE, 2012, 8442: 84421C.
|
[61] |
ANDERSEN G P, ASMOLOVA O. FalconSAT-7: a membrane space telescope[J].
Proceedings of SPIE, 2014, 9143: 91431X.
|
[62] |
ANDERSEN G, ASMOLOVA O, MCHARG M G,
et al. FalconSAT-7: a membrane space solar telescope[J].
Proceedings of SPIE, 2016, 9904: 99041P.
|
[63] |
DEARBORN M, ANDERSEN G, MCHARG M G,
et al.. FALCONSAT-7: A Deploy Able Solar Telescope Mission[C]//28th Annual AIAA/USU Conference of Small Satellites, 2012.
|
[64] |
郭明. 卫星大尺度展开机构地面测控系统的设计与实现[D]. 哈尔滨工业大学, 2017.GUO M. Design and implementation of a ground-based measurement and control system for large scale satellite deployment mechanism[D]. Harbin Institute of Technology, 2017.
|
[65] |
HYDE R A. Eyeglass. 1. Very large aperture diffractive telescopes[J].
Applied Optics, 1999, 38(19): 4198-4212.
doi:
10.1364/AO.38.004198
|
[66] |
HYDE R A, DIXIT S N, WEISBERG A H,
et al. Eyeglass: a very large aperture diffractive space telescope[J].
Proceedings of SPIE, 2002, 4849: 28-39.
doi:
10.1117/12.460420
|
[67] |
HYDE R A, DIXIT S N, WEISBERG A H,
et al. . Large aperture diffractive space telescope[J].
Proceedings of SPIE - The International Society for Optical Engineering, 2001.
|
[68] |
HYDE R. Eyeglass large aperture, lightweight space optics FY2000 - FY2002 LDRD strategic initiative[R]. Livermore: Lawrence Livermore National Lab. , 2003.
|
[69] |
王昊, 康福增, 赵卫, 谢永军. 一种红外衍射望远镜的光学设计[J]. 红外与毫米波学报,2016,35(4):425-429.WANG H, KANG F Z, ZHAO W, XIE Y J. Optical design of an infrared diffraction telescope[J].
Journal of Infrared and Millimeter Waves, 2016, 35(4): 425-429. (in Chinese)
|
[70] |
陈晓丽, 傅丹鹰. 大口径甚高分辨率空间光学遥感器技术途径探讨[J]. 航天返回与遥感,2003,24(4):19-24.
doi:
10.3969/j.issn.1009-8518.2003.04.005
CHEN X L, FU D Y. Solutions for space optical remote sensor with large aperture and ultrahigh resolution[J].
Spacecraft Recovery
&Remote Sensing, 2003, 24(4): 19-24. (in Chinese)
doi:
10.3969/j.issn.1009-8518.2003.04.005
|
[71] |
WANG R Q, ZHANG ZH Y, GUO CH L,
et al. Effects of fabrication errors on diffraction efficiency for a diffractive membrane[J].
Chinese Optics Letters, 2016, 14(12): 120501.
doi:
10.3788/COL201614.120501
|
[72] |
XUE CH X, CUI Q F. Design of multilayer diffractive optical elements with polychromatic integral diffraction efficiency[J]
Optics Letters, 2010, 35(7): 986-988.
|
[73] |
刘民哲, 刘华, 许文斌, 等. 用于空间望远镜的膜光子筛[J]. 光学 精密工程,2014,22(8):2127-2134.
doi:
10.3788/OPE.20142208.2127
LIU M ZH, LIU H, XU W B,
et al. Membrane photon sieve for space telescope[J].
Optics and Precision Engineering, 2014, 22(8): 2127-2134. (in Chinese)
doi:
10.3788/OPE.20142208.2127
|
[74] |
张健, 栗孟娟, 阴刚华, 等. 用于太空望远镜的大口径薄膜菲涅尔衍射元件[J]. 光学 精密工程,2016,24(6):1289-1296.
doi:
10.3788/OPE.20162406.1289
ZHANG J, SU M Y, YIN G H,
et al. Large-diameter membrane fresnel diffraction elements for space telescope[J].
Optics and Precision Engineering, 2016, 24(6): 1289-1296. (in Chinese)
doi:
10.3788/OPE.20162406.1289
|
[75] |
DANIEL J. SCHROEDER.
Reflecting Telescopes in Astronomical Optics
(Second Edition) [M]. Elsevier Inc, 2000, 112-163.
|
[76] |
NICHOLAS G, KEDAR K. Digital Binary MEMS Wavefront Control, US, 8379292-B2[P]. 2013-02-19.
|
[77] |
LIESENER J, HUPFER W J, GEHNER R,
et al. Tests on micromirror arrays for adaptive optics[J].
Proceedings of SPIE, 2004, 5553: 319-329.
doi:
10.1117/12.558679
|
[78] |
DEKANY R G, MACMARTIN D G, CHANAN G A,
et al. Advanced segmented silicon space telescope (ASSIST)[J].
Proceedings of SPIE, 2002, 4849: 103-111.
doi:
10.1117/12.460563
|
[79] |
AGRAWAL B, KUBBY J. Applications of MEMS in segmented mirror space telescopes[J].
Proceedings of SPIE, 2011, 7931: 793102.
|
[80] |
MARK C. The James Webb Space Telescope[J].
Advances in Space Research, 2008, 41(12): 1983-1991.
|
[81] |
DEAN B H, ARONSTEIN D L, SMITH J S,
et al. Phase retrieval algorithm for JWST flight and testbed telescope[J].
Proceedings of SPIE, 2006, 6265: 626511.
doi:
10.1117/12.673569
|
[82] |
WRIGHT G S, RIEKE G H, COLINA L,
et al. The JWST MIRI instrument concept[J].
Proceedings of SPIE, 2004, 5487: 653-663.
doi:
10.1117/12.551717
|
[83] |
FREESE K, ILIE C, SPOLYAR D,
et al. Supermassive dark stars: detectable in JWST[J].
The Astrophysical Journal, 2010, 716(2): 1397-1407.
doi:
10.1088/0004-637X/716/2/1397
|
[84] |
THOMAS E.
Towards 1 m Resolution from GEO Executive Summary Report[B]. Thales Alenia Space, Italy, 2010: 1-13.
|
[85] |
BOLCAR M R, FEINBERG L, FRANCE K,
et al. Initial Technology Assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) Mission Concept Study[J].
Proceedings of SPIE, 2016, 9904: 99040J.
|
[86] |
STAHL H P, HOPKINS R C. SLS Launched missions concept studies for LUVOIR mission[J].
Proceedings of SPIE, 2015, 9602: 960206.
|
[87] |
FRANCE K, FLEMING B, WEST G,
et al. The LUVOIR ultraviolet multi-object spectrograph (LUMOS): instrument definition and design[J].
Proceedings of SPIE, 2017, 10397: 1039713.
|
[88] |
MENNESSON B, GAUDI S, SEAGER S,
et al. The Habitable Exoplanet (HabEx) imaging mission: preliminary science drivers and technical requirements[J].
Proceedings of SPIE, 2016, 9904: 99040L.
|
[89] |
陈晓丽, 杨秉新, 王永辉, 等. 空间可展开光学系统主镜分块方案研究[J]. 航天返回与遥感,2008,29(1):28-33.
doi:
10.3969/j.issn.1009-8518.2008.01.006
CHEN X L, YANG B X, WANG Y H,
et al. Segmentation of primary mirror for the space deployable optical system[J].
Spacecraft Recovery
&Remote Sensing, 2008, 29(1): 28-33. (in Chinese)
doi:
10.3969/j.issn.1009-8518.2008.01.006
|
[90] |
郭崇岭, 陈传志, 陈金宝, 等. 空间光学望远镜在轨建造中的结构机构技术[J]. 宇航学报,2022,43(2):158-166.
doi:
10.3873/j.issn.1000-1328.2022.02.003
GUO CH L, CHEN CH ZH, CHEN J B,
et al. Structure and mechanism technology of in-space manufacturing space optical telescope[J].
Journal of Astronautics, 2022, 43(2): 158-166. (in Chinese)
doi:
10.3873/j.issn.1000-1328.2022.02.003
|
[91] |
金建高, 阮宁娟, 苏云, 等. 空间大型光学遥感器主镜问题解决方法探讨[J]. 空间电子技术,2016,13(2):20-25,43.
doi:
10.3969/j.issn.1674-7135.2016.02.005
JIN J G, RUAN N J, SU Y,
et al. Discussion for solution of huge space remote sensor primary mirror issue[J].
Space Electronic Technology, 2016, 13(2): 20-25,43. (in Chinese)
doi:
10.3969/j.issn.1674-7135.2016.02.005
|
[92] |
乔彦峰, 刘坤, 段相永. 光学合成孔径成像技术及发展现状[J]. 中国光学与应用光学,2009,2(3):175-183.QIAO Y F, LIU S, DUAN X Y. Optical synthetic aperture imaging techniques and development[J].
Chinese Journal of Optics and Applied Optics, 2009, 2(3): 175-183. (in Chinese)
|
[93] |
范伟军, 周必方, 王海涛. 光学综合孔径成像中的傅里叶相位研究[J]. 光学学报,2004,24(3):408-412.
FAN W J, ZHOU B F, WANG H T. Research of Fourier phase in optical synthetic-aperture imaging technique[J].
Acta Optica Sinica, 2004, 24(3): 408-412. (in Chinese)
|
[94] |
LUCKE R L, RICKARD L J. Photon-limited synthetic-aperture imaging for planet surface studies[J].
Applied Optics, 2002, 41(24): 5084-5095.
doi:
10.1364/AO.41.005084
|
[95] |
LIU ZH, WANG SH Q, RAO CH H. The Co-phasing detection method for sparse optical synthetic aperture systems[J].
Chinese Physics B, 2012, 21(6): 069501.
doi:
10.1088/1674-1056/21/6/069501
|
[96] |
RHODES W T. Digital processing of synthetic aperture optical imagery[J].
Optical Engineering, 1974, 13(3): 267-274.
|
[97] |
WU Y, HUI M, LI W Q,
et al. MTF improvement for optical synthetic aperture system via mid-frequency compensation[J].
Optics Express, 2021, 29(7): 10249-10264.
doi:
10.1364/OE.420512
|
[98] |
CHUNG S J, MILLER D W, DE WECK O L. ARGOS testbed: study of multidisciplinary challenges of future spaceborne interferometric arrays[J].
Optical Engineering, 2004, 43(9): 2156-2167.
doi:
10.1117/1.1779232
|
[99] |
WONG M H. A dedicated space observatory for time-domain solar system science[Z].
AAS/Division for Planetary Sciences Meeting Abstracts. 2009.
|
[100] |
CHUNG S J, LO B D M, MILLER D W,
et al. . Multidisciplinary Control of a Sparse Interferometric Array Satellite Testbed[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA, 2013.
|
[101] |
LAWSON P R, LAY O P, MARTIN S R,
et al. Terrestrial planet finder interferometer 2007—2008 progress and plans[J].
Proceedings of SPIE, 2008, 7013: 70132N.
|
[102] |
LAWSON P R, LAY O P, MARTIN S R,
et al. Terrestrial planet finder interferometer: 2006—2007 progress and plans[J].
Proceedings of SPIE, 2007, 6693: 669308.
doi:
10.1117/12.734914
|
[103] |
BEICHMAN C, LAWSON P, LAY O,
et al. Status of the terrestrial planet finder interferometer (TPF-I)[J].
Proceedings of SPIE, 2006, 6268: 62680S.
doi:
10.1117/12.673583
|
[104] |
LAWSON P R, AHMED A, GAPPINGER R O,
et al. Terrestrial planet finder interferometer technology status and plans[J].
Proceedings of SPIE, 2006, 6268: 626828.
doi:
10.1117/12.670318
|
[105] |
GUARNIERI A M, BOMBACI O, CATALANO T F,
et al. ARGOS: A fractioned geosynchronous SAR[J].
Acta Astronautica, 2019, 164: 444-457.
doi:
10.1016/j.actaastro.2015.11.022
|
[106] |
QIAN J H, WU X Y, LIU H W,
et al. The structure research and design for beam steering and adjustment in Golay3 sparse-aperture imaging system[J].
Applied Sciences, 2022, 12(8): 4003.
|
[107] |
STUBBS D, DUNCAN A, PITMAN J T,
et al. Multiple instrument distributed aperture sensor (MIDAS) evolved design concept[J].
Proceedings of SPIE, 2004, 5550: 391-398.
doi:
10.1117/12.560319
|
[108] |
PITMAN J, DUNCAN A, STUBBS D,
et al. Multiple instrument distributed aperture sensor (MIDAS) for remote sensing[J].
Proceedings of SPIE, 2004, 5570: 168-180.
|
[109] |
SCUDERI S, GIULIANI A, PARESCHI G,
et al. The ASTRI Mini-Array of Cherenkov telescopes at the Observatorio del Teide[J].
Journal of High Energy Astrophysics, 2022, 35: 52-68.
doi:
10.1016/j.jheap.2022.05.001
|
[110] |
SUZUMOTO R, IKARI S, MIYAMURA N,
et al.. Experimental study for synthetic aperture telescope using formation flying micro-satellites for high-frequency and high-resolution GEO remote sensing[C].
34th Annual Small Satellite Conference, 2020.
|
[111] |
WANG D Y. Experimental study on imaging and image restoration of optical sparse aperture systems[J].
Optical Engineering, 2007, 46(10): 103201.
doi:
10.1117/1.2799512
|
[112] |
马佳. 欧洲启动达尔文计划搜捕地外生命[J]. 今日科苑,2007(15):12-14.MA J. Europe launched the darwin plan to hunt for extraterrestrial life[J].
Modern Science, 2007(15): 12-14. (in Chinese)
|
[113] |
周程灏, 王治乐, 朱峰. 大口径光学合成孔径成像技术发展现状[J]. 中国光学,2017,10(1):25-38.ZHOU CH H, WANG ZH Y, ZHU F. Status of development of large-aperture optical synthetic aperture imaging technology[J].
China Optics, 2017, 10(1): 25-38. (in Chinese)
|
[114] |
SUZUMOTO R, IKARI S, MIYAMURA N,
et al.. Experimental study for synthetic aperture telescope using formation flying micro-satellites for high-frequency and high-resolution GEO remote sensing[C].
34th Annual Small Satellite Conference. 2020.
|
[115] |
徐伟, 金光, 王家骐. 吉林一号轻型高分辨率遥感卫星光学成像技术[J]. 光学 精密工程,2017,25(8):1969-1978.
doi:
10.3788/OPE.20172508.1969
XU W, JIN G, WANG J Q. Optical imaging technology of JL-1 lightweight high resolution multispectral remote sensing satellite[J].
Optics and Precision Engineering, 2017, 25(8): 1969-1978. (in Chinese)
doi:
10.3788/OPE.20172508.1969
|
[116] |
DUNCAN A L, KENDRICK R L. Segmented planar imaging detector for electro-optic reconnaissance: US, 8913859[P]. 2014-12-16.
|
[117] |
DUNCAN A L, KENDRICK R L. Segmented planar imaging detector for electro-optic reconnaissance (SPIDER) Zoom: US, 10012827[P]. 2018-07-03.
|
[118] |
LV G M, LI Q, CHEN Y T,
et al. An improved scheme and numerical simulation of segmented planar imaging detector for electro-optical reconnaissance[J].
Optical Review, 2019, 26(6): 664-675.
doi:
10.1007/s10043-019-00548-w
|
[119] |
CHU Q H, SHEN Y J, YUAN M,
et al. Numerical simulation and optimal design of segmented planar imaging detector for electro-optical reconnaissance[J].
Optics Communications, 2017, 405: 288-296.
doi:
10.1016/j.optcom.2017.08.021
|
[120] |
余恭敏, 晋利兵, 周峰, 等. 分块式平面光电侦察成像系统发展概述[J]. 航天返回与遥感,2018,39(5):1-9.
doi:
10.3969/j.issn.1009-8518.2018.05.001
YU G M, JIN L B, ZHOU F,
et al. A review on development of segmented planar imaging detector for electro-optical reconnaissance system[J].
Spacecraft Recovery
&Remote Sensing, 2018, 39(5): 1-9. (in Chinese)
doi:
10.3969/j.issn.1009-8518.2018.05.001
|
[121] |
BADHAM K, KENDRICK R, WUCHENICH D,
et al.. Photonic integrated circuit-based imaging system for SPIDER[C].
2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), IEEE, 2017.
|
[122] |
DESEILLIGNY M P, PAPARODITIS N. A multiresolution and optimization-based image matching approach: an application to surface reconstruction from Spot5-hrs stereo imagery[C]//Proc of the ISPRS Conference Topographic Mapping from Space. US, 2006.
|
[123] |
MURTHY K, SHEARN M, SMILEY B D,
et al. SkySat-1: very high-resolution imagery from a small satellite[J].
Proceedings of SPIE, 2014, 9241: 92411E.
|
[124] |
DINARDJ A, ANFLO K, FRIEDHOFF P. On-orbit commissioning of high performance green propulsion (HPGP) in the SkySat constellation[C].
Small Satellite Conference, 2017.
|
[125] |
周宇, 王鹏, 傅丹膺. SkySat卫星的系统创新设计及启示[J]. 航天器工程,2015,24(5):91-98.
doi:
10.3969/j.issn.1673-8748.2015.05.014
ZHOU Y, WANG P, FU D Y,
et al. System innovation and enlightenment of SkySat[J].
Spacecraft Engineering, 2015, 24(5): 91-98. (in Chinese)
doi:
10.3969/j.issn.1673-8748.2015.05.014
|
[126] |
JOHANSEN K, DUNNE A F, TU Y H,
et al. Monitoring coastal water flow dynamics using sub-daily high-resolution SkySat satellite and UAV-based imagery[J].
Water Research, 2022, 219: 118531.
doi:
10.1016/j.watres.2022.118531
|
[127] |
李峰, 杨雪, 鲁啸天, 等. 面向星载CMOS相机的超时相工作方式研究[J]. 遥感学报,2021,25(1):514-525.LI F, YANG X, LU X T,
et al. A new hyper-temporal imaging mode for spaceborne CMOS cameras[J].
Journal of Remote Sensing, 2021, 25(1): 514-525. (in Chinese)
|
[128] |
谢伟, 陈皓, 秦前清. 基于多帧视频序列的盲超分辨率影像重建[J]. 数据采集与处理,2011,26(1):1-7.
doi:
10.3969/j.issn.1004-9037.2011.01.001
XIE W, CHEN H, QIN Q Q. Blind super-resolution image reconstruction based on multiframe video sequence[J].
Journal of Data Acquisition
&Processing, 2011, 26(1): 1-7. (in Chinese)
doi:
10.3969/j.issn.1004-9037.2011.01.001
|
[129] |
ZHENG G A, HORSTMEYER R, YANG C H E. Wide-field, high-resolution Fourier ptychographic microscopy[J].
Nature Photonics, 2013, 7(9): 739-745.
doi:
10.1038/nphoton.2013.187
|
[130] |
HOLLOWAY J, WU Y, SHARMA M K,
et al. SAVI: Synthetic apertures for long-range, subdiffraction-limited visible imaging using fourier ptychography[J].
Science Advances, 2017, 3(4): e1602564.
|
[131] |
DONG S Y, HORSTMEYER R, SHIRADKAR R,
et al. Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging[J].
Optics Express, 2014, 22(11): 13586-13599.
doi:
10.1364/OE.22.013586
|
[132] |
HOLLOWAY J, ASIF M S, SHARMA M K,
et al. Toward long-distance subdiffraction imaging using coherent camera arrays[J].
IEEE Transactions on Computational Imaging, 2017, 2(3): 251-265.
|
[133] |
WANG C Y, HU M, TAKASHIMA Y,
et al. Snapshot Ptychography on Array cameras[J].
Optics Express, 2022, 30(2): 2585-2598.
doi:
10.1364/OE.447499
|
[134] |
WU J CH, YANG F, CAO L C. Resolution enhancement of long-range imaging with sparse apertures[J].
Optics and Lasers in Engineering, 2022, 155: 107068.
doi:
10.1016/j.optlaseng.2022.107068
|
[135] |
赵明, 王希明, 张晓慧, 等. 宏观傅里叶叠层超分辨率成像实验研究[J]. 激光与光电子学进展,2019,56(12):101-107.ZHAO M, WANG X M, ZHANG X H,
et al. Experimental research on macroscopic Fourier ptychography super-resolution imaging[J].
Laser
&Optoelectronics Progress, 2019, 56(12): 101-107. (in Chinese)
|
[136] |
相萌. 宏观傅里叶叠层成像的关键问题研究[D]. 西安: 中国科学院大学, 2021.XIANG M. Study on key problems of macroscopic Fourier ptychography imaging[D]. Xi’an: University of Chinese Academy of Sciences, 2021. (in Chinese)
|