[1] |
OLZMANN J A, CARVALHO P. Dynamics and functions of lipid droplets[J].
Nature Reviews Molecular Cell Biology, 2019, 20(3): 137-155.
doi:
10.1038/s41580-018-0085-z
|
[2] |
THIAM A R, BELLER M. The why, when and how of lipid droplet diversity[J].
Journal of Cell Science, 2017, 130(2): 315-324.
|
[3] |
CHOUDHARY V, OJHA N, GOLDEN A,
et al. A conserved family of proteins facilitates nascent lipid droplet budding from the ER[J].
Journal of Cell Biology, 2015, 211(2): 261-271.
doi:
10.1083/jcb.201505067
|
[4] |
JACQUIER N, CHOUDHARY V, MARI M,
et al. Lipid droplets are functionally connected to the endoplasmic reticulum in
Saccharomyces cerevisiae[J].
Journal of Cell Science, 2011, 124(14): 2424-2437.
doi:
10.1242/jcs.076836
|
[5] |
KASSAN A, HERMS A, FERNÁNDEZ-VIDAL A,
et al. Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains[J].
Journal of Cell Biology, 2013, 203(6): 985-1001.
doi:
10.1083/jcb.201305142
|
[6] |
BUHMAN K K, CHEN H C, FARESE R V JR. The enzymes of neutral lipid synthesis[J].
Journal of Biological Chemistry, 2001, 276(44): 40369-40372.
doi:
10.1074/jbc.R100050200
|
[7] |
THIAM A R, FARESE R V JR, WALTHER T C. The biophysics and cell biology of lipid droplets[J].
Nature Reviews Molecular Cell Biology, 2013, 14(12): 775-786.
doi:
10.1038/nrm3699
|
[8] |
WALTHER T C, FARESE R V JR. Lipid droplets and cellular lipid metabolism[J].
Annual Review of Biochemistry, 2012, 81: 687-714.
doi:
10.1146/annurev-biochem-061009-102430
|
[9] |
FARESE R V JR, WALTHER T C. Lipid droplets finally get a little R-E-S-P-E-C-T[J].
Cell, 2009, 139(5): 855-860.
doi:
10.1016/j.cell.2009.11.005
|
[10] |
ROITENBERG N, COHEN E. Lipid assemblies at the crossroads of aging, proteostasis, and neurodegeneration[J].
Trends in Cell Biology, 2019, 29(12): 954-963.
doi:
10.1016/j.tcb.2019.09.003
|
[11] |
KRAHMER N, FARESE R V JR, WALTHER T C. Balancing the fat: lipid droplets and human disease[J].
EMBO Molecular Medicine, 2013, 5(7): 973-983.
doi:
10.1002/emmm.201100671
|
[12] |
ONAL G, KUTLU O, GOZUACIK D,
et al. Lipid droplets in health and disease[J].
Lipids in Health and Disease, 2017, 16(1): 128.
doi:
10.1186/s12944-017-0521-7
|
[13] |
LIU Q P, LUO Q, HALIM A,
et al. Targeting lipid metabolism of cancer cells: a promising therapeutic strategy for cancer[J].
Cancer Letters, 2017, 401: 39-45.
doi:
10.1016/j.canlet.2017.05.002
|
[14] |
COLLOT M, FAM T K, ASHOKKUMAR P,
et al. Ultrabright and fluorogenic probes for multicolor imaging and tracking of lipid droplets in cells and tissues[J].
Journal of the American Chemical Society, 2018, 140(16): 5401-5411.
doi:
10.1021/jacs.7b12817
|
[15] |
GUO L F, TIAN M G, ZHANG ZH Y,
et al. Simultaneous two-color visualization of lipid droplets and endoplasmic reticulum and their interplay by single fluorescent probes in lambda mode[J].
Journal of the American Chemical Society, 2021, 143(8): 3169-3179.
doi:
10.1021/jacs.0c12323
|
[16] |
SHI L, LI K, LI L L,
et al. Novel easily available purine-based AIEgens with colour tunability and applications in lipid droplet imaging[J].
Chemical Science, 2018, 9(48): 8969-8974.
doi:
10.1039/C8SC03369B
|
[17] |
ZHANG CH, LI J J, LAN L,
et al. Quantification of lipid metabolism in living cells through the dynamics of lipid droplets measured by stimulated raman scattering imaging[J].
Analytical Chemistry, 2017, 89(8): 4502-4507.
doi:
10.1021/acs.analchem.6b04699
|
[18] |
ZHANG CH, BOPPART S A. Dynamic signatures of lipid droplets as new markers to quantify cellular metabolic changes[J].
Analytical Chemistry, 2020, 92(24): 15943-15952.
doi:
10.1021/acs.analchem.0c03366
|
[19] |
TAKI M, KAJIWARA K, YAMAGUCHI E,
et al. Fused thiophene-S, S-dioxide-based super-photostable fluorescent marker for lipid droplets[J].
ACS Materials Letters, 2021, 3(1): 42-49.
doi:
10.1021/acsmaterialslett.0c00451
|
[20] |
XU Y Z, ZHANG H K, ZHANG N,
et al. An easily synthesized AIE luminogen for lipid droplet-specific super-resolution imaging and two-photon imaging[J].
Materials Chemistry Frontiers, 2021, 5(4): 1872-1883.
doi:
10.1039/D0QM00682C
|
[21] |
ZHOU R, WANG CH G, LIANG X SH,
et al. Stimulated emission depletion (STED) super-resolution imaging with an advanced organic fluorescent probe: visualizing the cellular lipid droplets at the unprecedented nanoscale resolution[J].
ACS Materials Letters, 2021, 3(5): 516-524.
doi:
10.1021/acsmaterialslett.1c00143
|
[22] |
LIU G N, PENG G SH, DAI J N,
et al. STED nanoscopy imaging of cellular lipid droplets employing a superior organic fluorescent probe[J].
Analytical Chemistry, 2021, 93(44): 14784-14791.
doi:
10.1021/acs.analchem.1c03474
|
[23] |
LIU G N, DAI J N, ZHOU R,
et al. A distyrylbenzene-based fluorescent probe with high photostability and large Stokes shift for STED nanoscopy imaging of cellular lipid droplets[J].
Sensors and Actuators B:Chemical, 2022, 353: 131000.
doi:
10.1016/j.snb.2021.131000
|
[24] |
XU H K, ZHANG H H, LIU G,
et al. Coumarin-based fluorescent probes for super-resolution and dynamic tracking of lipid droplets[J].
Analytical Chemistry, 2019, 91(1): 977-982.
doi:
10.1021/acs.analchem.8b04079
|
[25] |
O’CONNOR D, BYRNE A, BERSELLI G B,
et al. Mega-stokes pyrene ceramide conjugates for STED imaging of lipid droplets in live cells[J].
Analyst, 2019, 144(5): 1608-1621.
doi:
10.1039/C8AN02260G
|
[26] |
LIU X L, XIN L, TONG Z,
et al. Revealing lipid droplets evolution at nanoscale under proteohormone stimulation by a BODIPY-hexylcarbazole derivative[J].
Biosensors and Bioelectronics, 2021, 175: 112871.
doi:
10.1016/j.bios.2020.112871
|
[27] |
CHEN J, WANG CH, LIU W J,
et al. Stable super-resolution imaging of lipid droplet dynamics through a buffer strategy with a hydrogen-bond sensitive fluorogenic probe[J].
Angewandte Chemie International Edition, 2021, 60(47): 25104-25113.
doi:
10.1002/anie.202111052
|
[28] |
WU M Y, LEUNG J K, KAM C,
et al. A near-infrared AIE probe for super-resolution imaging and nuclear lipid droplet dynamic study[J].
Materials Chemistry Frontiers, 2021, 5(7): 3043-3049.
doi:
10.1039/D0QM00914H
|
[29] |
ZHENG X J, ZHU W CH, NI F,
et al. A specific bioprobe for super-resolution fluorescence imaging of lipid droplets[J].
Sensors and Actuators B:Chemical, 2018, 255: 3148-3154.
doi:
10.1016/j.snb.2017.09.139
|
[30] |
ZHENG X J, ZHU W CH, NI F,
et al. Simultaneous dual-colour tracking lipid droplets and lysosomes dynamics using a fluorescent probe[J].
Chemical Science, 2019, 10(8): 2342-2348.
doi:
10.1039/C8SC04462G
|
[31] |
TANG J, ROBICHAUX M A, WU K L,
et al. Single-atom fluorescence switch: a general approach toward visible-light-activated dyes for biological imaging[J].
Journal of the American Chemical Society, 2019, 141(37): 14699-14706.
doi:
10.1021/jacs.9b06237
|
[32] |
WANG L SH, WANG SH CH, TANG J,
et al. Oxime as a general photocage for the design of visible light photo-activatable fluorophores[J].
Chemical Science, 2021, 12(47): 15572-15580.
doi:
10.1039/D1SC05351E
|
[33] |
ADHIKARI S, BANERJEE C, MOSCATELLI J,
et al. Conventional BODIPY conjugates for live-cell super-resolution microscopy and single-molecule tracking[J].
Journal of Visualized Experiments, 2020(160): 60950-60958.
|
[34] |
YE SH, YAN W, ZHAO M J,
et al. Low-saturation-intensity, high-photostability, and high-resolution STED nanoscopy assisted by CsPbBr3
quantum dots[J].
Advanced Materials, 2018, 30(23): 1800167.
doi:
10.1002/adma.201800167
|
[35] |
WANG L W, CHEN Y, PENG X,
et al. Ultralow power demand in fluorescence nanoscopy with digitally enhanced stimulated emission depletion[J].
Nanophotonics, 2020, 9(4): 831-839.
doi:
10.1515/nanoph-2019-0475
|
[36] |
LI D Y, QIN W, XU B,
et al. AIE nanoparticles with high stimulated emission depletion efficiency and photobleaching resistance for long-term super-resolution bioimaging[J].
Advanced Materials, 2017, 29(43): 1703643.
doi:
10.1002/adma.201703643
|
[37] |
LI D Y, NI X, ZHANG X Y,
et al. Aggregation-induced emission luminogen-assisted stimulated emission depletion nanoscopy for super-resolution mitochondrial visualization in live cells[J].
Nano Research, 2018, 11(11): 6023-6033.
doi:
10.1007/s12274-018-2118-5
|
[38] |
LIU Y J, LU Y Q, YANG X S,
et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy[J].
Nature, 2017, 543(7644): 229-233.
doi:
10.1038/nature21366
|
[39] |
HUANG X SH, FAN J CH, LI L J,
et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy[J].
Nature Biotechnology, 2018, 36(5): 451-459.
doi:
10.1038/nbt.4115
|
[40] |
ZHENG X L, DUAN R Y, LI L J,
et al. Live-cell superresolution pathology reveals different molecular mechanisms of Pelizaeus-Merzbacher disease[J].
Science Bulletin, 2020, 65(24): 2061-2064.
doi:
10.1016/j.scib.2020.08.016
|
[41] |
ZHANGHAO H, CHEN X Y, LI M H,
et al. Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy[J].
Nature Communications, 2019, 10(1): 4694.
doi:
10.1038/s41467-019-12681-w
|
[42] |
GUO Y T, LI D, ZHANG S W,
et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales[J].
Cell, 2018, 175(5): 1430-1442.e17.
doi:
10.1016/j.cell.2018.09.057
|
[43] |
LI D, SHAO L, CHEN B CH,
et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics[J].
Science, 2015, 349(6251): aab3500.
doi:
10.1126/science.aab3500
|
[44] |
ZHAO T Y, HAO H W, WANG ZH J,
et al. Multi-color structured illumination microscopy for live cell imaging based on the enhanced image recombination transform algorithm[J].
Biomedical Optics Express, 2021, 12(6): 3474-3484.
doi:
10.1364/BOE.423171
|
[45] |
WANG ZH J, ZHAO T Y, HAO H W,
et al. High-speed image reconstruction for optically sectioned, super-resolution structured illumination microscopy[J].
Advanced Photonics, 2022, 4(2): 026003.
|
[46] |
LIU ZH H, LIU J, WANG X D,
et al. Fluorescent bioconjugates for super-resolution optical nanoscopy[J].
Bioconjugate Chemistry, 2020, 31(8): 1857-1872.
doi:
10.1021/acs.bioconjchem.0c00320
|
[47] |
GUI D, CHEN Y J, KUANG W B,
et al. Accelerating multi-emitter localization in super-resolution localization microscopy with FPGA-GPU cooperative computation[J].
Optics Express, 2021, 29(22): 35247-35260.
doi:
10.1364/OE.439976
|
[48] |
WANG Y J, KUANG W B, SHANG M T,
et al. Two-color super-resolution localization microscopy via joint encoding of emitter location and color[J].
Optics Express, 2021, 29(21): 34797-34809.
doi:
10.1364/OE.440706
|
[49] |
DU Y, WANG CH Z, ZHANG CH,
et al. Computational framework for generating large panoramic super-resolution images from localization microscopy[J].
Biomedical Optics Express, 2021, 12(8): 4759-4778.
doi:
10.1364/BOE.433489
|
[50] |
HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J].
Optics Letters, 1994, 19(11): 780-782.
doi:
10.1364/OL.19.000780
|
[51] |
KLAR T A, HELL S W. Subdiffraction resolution in far-field fluorescence microscopy[J].
Optics Letters, 1999, 24(14): 954-956.
doi:
10.1364/OL.24.000954
|
[52] |
BUTKEVICH A N, YU G, SIDENSTEIN S C,
et al. Fluorescent rhodamines and fluorogenic carbopyronines for super-resolution STED microscopy in living cells[J].
Angewandte Chemie International Edition, 2016, 55(10): 3290-3294.
doi:
10.1002/anie.201511018
|
[53] |
BORDENAVE M D, BALZAROTTI F, STEFANI F D,
et al. STED nanoscopy with wavelengths at the emission maximum[J].
Journal of Physics D:Applied Physics, 2016, 49(36): 365102.
doi:
10.1088/0022-3727/49/36/365102
|
[54] |
GÖTTFERT F, PLEINER T, HEINE J,
et al. Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent[J].
Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(9): 2125-2130.
doi:
10.1073/pnas.1621495114
|
[55] |
SHANK N I, PHAM H H, WAGGONER A S,
et al. Twisted cyanines: a non-planar fluorogenic dye with superior photostability and its use in a protein-based fluoromodule[J].
Journal of the American Chemical Society, 2013, 135(1): 242-251.
doi:
10.1021/ja308629w
|
[56] |
SHANK N I, ZANOTTI K J, LANNI F,
et al. Enhanced photostability of genetically encodable fluoromodules based on fluorogenic cyanine dyes and a promiscuous protein partner[J].
Journal of the American Chemical Society, 2009, 131(36): 12960-12969.
doi:
10.1021/ja9016864
|
[57] |
OYAMA Y, MAMADA M, SHUKLA A,
et al. Design strategy for robust organic semiconductor laser dyes[J].
ACS Materials Letters, 2020, 2(2): 161-167.
doi:
10.1021/acsmaterialslett.9b00536
|
[58] |
MICHIE M S, GÖTZ R, FRANKE C,
et al. Cyanine conformational restraint in the far-red range[J].
Journal of the American Chemical Society, 2017, 139(36): 12406-12409.
doi:
10.1021/jacs.7b07272
|
[59] |
ZHOU R, CUI Y Y, DAI J N,
et al. A red-emissive fluorescent probe with a compact single-benzene-based skeleton for cell imaging of lipid droplets[J].
Advanced Optical Materials, 2020, 8(13): 1902123.
doi:
10.1002/adom.201902123
|
[60] |
YANG X S, YANG ZH G, WU ZH Y,
et al. Mitochondrial dynamics quantitatively revealed by STED nanoscopy with an enhanced squaraine variant probe[J].
Nature Communications, 2020, 11(1): 3699.
doi:
10.1038/s41467-020-17546-1
|
[61] |
LIU Y J, DING Y CH, ALONAS E,
et al. Achieving λ/10 resolution CW STED nanoscopy with a Ti: sapphire oscillator[J].
PLoS One, 2012, 7(6): e40003.
doi:
10.1371/journal.pone.0040003
|
[62] |
BIANCHINI P, HARKE B, GALIANI S,
et al. Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging[J].
Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(17): 6390-6393.
doi:
10.1073/pnas.1119129109
|
[63] |
GUSTAFSSON M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy: short communication[J].
Journal of Microscopy, 2000, 198(2): 82-87.
doi:
10.1046/j.1365-2818.2000.00710.x
|
[64] |
GUSTAFSSON M G L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J].
Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37): 13081-13086.
doi:
10.1073/pnas.0406877102
|
[65] |
骆清铭, 张镇西. 生物医学光子学[M]. 北京: 人民卫生出版社, 2018.LUO Q M, ZHANG Z X.
Biomedical
Photonics[M]. Beijing: People's Medical Publishing House, 2018. (in Chinese)
|
[66] |
刘志贺, 吴长锋. 超分辨率成像荧光探针材料应用进展[J]. 中国光学,2018,11(3):344-362.
doi:
10.3788/co.20181103.0344
LIU ZH H, WU CH F. Advances in application of materials of super-resolution imaging fluorescent probe[J].
Chinese Optics, 2018, 11(3): 344-362. (in Chinese)
doi:
10.3788/co.20181103.0344
|
[67] |
SPAHN C, GRIMM J B, LAVIS L D,
et al. Whole-cell, 3D, and multicolor STED imaging with exchangeable fluorophores[J].
Nano Letters, 2019, 19(1): 500-505.
doi:
10.1021/acs.nanolett.8b04385
|
[68] |
BETZIG E, PATTERSON G H, SOUGRAT R,
et al. Imaging intracellular fluorescent proteins at nanometer resolution[J].
Science, 2006, 313(5793): 1642-1645.
doi:
10.1126/science.1127344
|
[69] |
BRIEKE C, ROHRBACH F, GOTTSCHALK A,
et al. Light-controlled tools[J].
Angewandte Chemie International Edition, 2012, 51(34): 8446-8476.
doi:
10.1002/anie.201202134
|
[70] |
LI W H, ZHENG G H. Photoactivatable fluorophores and techniques for biological imaging applications[J].
Photochemical
&Photobiological Sciences, 2012, 11(3): 460-471.
|
[71] |
SENGUPTA P, VAN ENGELENBURG S B, LIPPINCOTT-SCHWARTZ J. Superresolution imaging of biological systems using photoactivated localization microscopy[J].
Chemical Reviews, 2014, 114(6): 3189-3202.
doi:
10.1021/cr400614m
|
[72] |
NANI R R, GORKA A P, NAGAYA T,
et al. Near-IR light-mediated cleavage of antibody-drug conjugates using cyanine photocages[J].
Angewandte Chemie International Edition, 2015, 54(46): 13635-13638.
doi:
10.1002/anie.201507391
|
[73] |
GWOSCH K C, PAPE J K, BALZAROTTI F,
et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells[J].
Nature Methods, 2020, 17(2): 217-224.
doi:
10.1038/s41592-019-0688-0
|