引用本文: | 陈哲学, 王卫彪, 梁程, 张勇. 365彩票官网彩票[J]. 365赌球, 2021, 14(1): 1-17. doi: 10.37188/CO.2020-0176 |
Citation: | CHEN Zhe-xue, WANG Wei-biao, LIANG Cheng, ZHANG Yong. 365赌球[J]. Chinese Optics, 2021, 14(1): 1-17. doi: 10.37188/CO.2020-0176 |
图 1 (a)量子片所处体系的示意图[ 31 ];(b)二维量子片的文章发表数目(2007—2016)[ 4 ];(c)二维量子片的应用领域:医药[ 24 ],生物成像[ 25 ],催化[ 26 ],太阳能电池[ 27 ],非线性光学[ 28 ]等。(b)转载自文献[ 4 ],版权所有(2018)皇家化学学会。(c) 转载自文献[ 24 ],版权所有(2018)施普林格;转载自文献[ 25 ],版权所有(2018)施普林格;转载自文献[ 26 ],版权所有(2016)自然出版集团;转载自文献[ 27 ],版权所有(2018)施普林格;转载自文献[ 28 ],版权所有(2020)美国化学学会
Figure 1. (a) Schematic diagram of the system in which the quantum sheet is located[ 31 ];(b) number of journal publications on 2D QSs from 2007 to 2016[ 4 ];(c) application fields of 2D QSs:medicine[ 24 ], biological imaging[ 25 ],catalysis[ 26 ],solar cell[ 27 ],nonlinear optics[ 28 ],etc. (b) Adapted with permission ref. [ 4 ]. Copyright 2018, Royal Society of Chemistry; (c) Reproduced with permission ref. [ 24 ]. Copyright 2018, Springer. Reproduced with permission ref. [ 25 ]. Copyright 2018, Springer; Reproduced with permission ref. [ 26 ]. Copyright 2016, Nature Publishing Group; Reproduced with permission ref. [ 27 ]. Copyright 2018, Springer; Reproduced with permission ref. [ 28 ]. Copyright 2020, American Chemical Society.
图 2 二维材料的原子结构。(a)石墨烯[ 3 ];(b)氮化硼[ 3 ];(c)二硫化钼[ 48 ];(d)硒化铟[ 49 ];(e)氮化碳[ 50 ];(f)黑磷[ 41 ]。(a) 和(b)转载自文献[ 3 ],版权所有(2017)美国化学学会;(c) 转载自文献[ 48 ],版权所有(2011)自然出版集团;(d) 转载自文献[ 49 ],版权所有(2017)自然出版集团;(e) 转载自文献[ 50 ],版权所有(2017)皇家化学学会;(f) 转载自文献[ 41 ],版权所有(2014)自然出版集团
Figure 2. Atomic structures of 2D materials. (a) Graphene[ 3 ]; (b) BN[ 3 ]; (c) MoS2 [ 48 ]; (d) InSe[ 49 ]; (e) C3N4 [ 50 ]; (f) BP[ 41 ]. (a) and (b) Adapted with permission ref. [ 3 ]. Copyright 2017, American Chemical Society. (c) Adapted with permission ref. [ 48 ]. Copyright 2011, Nature Publishing Group. (d) Adapted with permission ref. [ 49 ]. Copyright 2017, Nature Publishing Group. (e) Adapted with permission ref. [ 50 ]. Copyright 2017, Royal Society of Chemistry. (f) Adapted with permission ref. [ 41 ]. Copyright 2014, Nature Publishing Group.
图 3 二维量子片的制备方法。自下而上:(a)化学气相沉积[ 66 ];(b)湿化学法[ 35 ]。自上而下:(c)电化学剥离[ 54 ];(d)研磨结合超声剥离[ 62 ];(e)液氮预处理和超声剥离[ 57 ];(f)回流预处理和超声剥离[ 63 ];(g)超薄切片结合液相剥离[ 59 ]。(a) 转载自文献[ 66 ],版权所有(2016)美国化学学会;(b)转载自文献[ 35 ],版权所有(2019)自然出版集团;(c) 转载自文献[ 54 ],版权所有(2015)皇家化学学会。(d) 转载自文献[ 62 ],版权所有(2015)威立出版集团;(e)转载自文献[ 57 ],版权所有(2017)美国科学促进会;(f)转载自文献[ 63 ],版权所有(2019)爱思唯尔;(g)转载自文献[ 59 ],版权所有(2020)施普林格
Figure 3.
The preparation methods of 2D QSs. Bottom-up: (a) CVD
[
66
]; (b) wet chemical method[
35
]. Top-down: (c) electrochemical exfoliation[
54
]; (d) grinding combined with sonication exfoliation[
62
]; (e) liquid nitrogen pretreatment combined with sonication exfoliation[
57
]; (f) reflux pretreatment combined with sonication exfoliation[
图 4 二维量子片的本征、普适和规模制备。(a)盐辅助球磨和超声辅助溶剂剥离[ 60 ];(b)量子片的制备机理示意图[ 60 ];(c)硅球辅助球磨和超声辅助溶剂剥离[ 23 ];(d)量子片分散液和粉体照片及对应的高分辨透射电镜照片[ 23 ];(e)从多壁碳纳米管制备石墨烯量子片[ 64 ]。(a-b)转载自文献[ 60 ],版权所有(2017)美国化学学会;(c-d)转载自文献[ 23 ],版权所有(2019)皇家化学学会;(e)转载自文献[ 64 ],版权所有(2020)美国化学学会
Figure 4. Universal and scalable production of intrinsic 2D QSs. (a) Salt-assisted ball-milling and sonication-assisted solvent exfoliation[ 60 ]; (b) schematic diagram of the fabrication mechanism of 2D QSs[ 60 ]; (c) silica-assisted ball-milling and sonication-assisted solvent exfoliation[ 23 ]; (d) photographs of the QS dispersions and powders and their HRTEM images; (e) robust strategy for tailoring multi-walled carbon nanotubes into GQSs[ 64 ]. (a-b) Reproduced with permission ref. [ 60 ]. Copyright 2017, American Chemical Society; (c-d) Reproduced with permission ref. [ 23 ]. Copyright 2019, Royal Society of Chemistry; (e) Reproduced with permission ref. [ 64 ]. Copyright 2020, American Chemical Society.
图 5 二维量子片的光致发光性能。(a)发射波长(nm)对GQSs尺寸的依赖关系[ 74 ];(b)不同尺寸石墨烯量子片的颜色变化[ 75 ];(c)元素掺杂的影响[ 80 ];(d-f)激发波长依赖性[ 23 ];(g)浓度依赖性[ 23 ];(h)溶剂依赖性[ 23 ];(i)固态荧光性能[ 23 ]。 (a) 转载自文献[ 74 ],版权所有(2015)皇家化学学会;(b) 转载自文献[ 75 ],版权所有(2014)美国化学学会;(c) 转载自文献[ 80 ],版权所有(2014)威立出版集团;(d-i)转载自文献[ 23 ],版权所有(2019)皇家化学学会
Figure 5. Photoluminescence of 2D QSs. (a) Dependence of emission wavelength (nm) on the size of GQSs[ 74 ]; (b) color changes of GQSs with different sizes[ 75 ]; (c) effects of elemental doping[ 80 ]; (d-f) excitation wavelength dependence[ 23 ]; (g) concentration dependence[ 23 ]; (h) solvent dependence[ 23 ]; (i) solid-state fluorescence[ 23 ]. (a) Reproduced with permission ref. [ 74 ]. Copyright 2015, Royal Society of Chemistry. (b) Adapted with permission ref. [ 75 ]. Copyright 2014, American Chemical Society. (c) Reproduced with permission ref. [ 80 ]. Copyright 2014, Wiley-VCH. (d-i) Reproduced with permission ref. [ 23 ]. Copyright 2019, Royal Society of Chemistry.
图 6
二维量子片在非线性光学中的应用。(a)等离激元增强石墨烯量子片二阶非线性效应[
89
];(b)黑磷量子片的三阶非线性效应[
94
];(c)锑烯量子片的光学克尔效应[
96
];(d)N掺杂的石墨烯量子片的非线性生物成像[
87
];(e)量子片-PMMA复合薄膜的非线性饱和吸收性能[
23
]。(a) 转载自文献[
Figure 6. Application of 2D QSs in nonlinear optics.(a)Plasmon-enhanced GQSs second-order nonlinearity[ 89 ];(b)third-order nonlinearity of BPQSs[ 94 ];(c)Kerr effect of AQSs[ 96 ];(d)nonlinear biological imaging of N-GQSs[ 87 ];(e)nonlinear saturation absorption of QSs-PMMA hybrid films[ 23 ]. (a) Reproduced with permission ref. [ 89 ]. Copyright 2015, American Chemical Society. (b) Reproduced with permission ref. [ 94 ]. Copyright 2016, Wiley-VCH. (c) Reproduced with permission ref. [ 96 ]. Copyright 2017, Wiley-VCH.(d)Reproduced with permission ref. [ 87 ]. Copyright 2013, American Chemical Society.(e)Reproduced with permission ref. [ 23 ]. Copyright 2019, Royal Society of Chemistry.
图 7 二维量子片在固态发光器件中的应用情况。(a)基于GQSs的垂直腔面发射激光器[ 104 ];(b)基于V2C MXene量子片的白色激光器[ 110 ];(c)基于MoS2 QSs的可拉伸和宽带无腔激光器[ 106 ];(d)基于MoS2 QSs(组氨酸掺杂)的白色发光二极管[ 112 ]。(a) 转载自文献[ 104 ],版权所有(2019)美国化学学会;(b) 转载自文献[ 110 ],版权所有(2019)威立出版集团;(c) 转载自文献[ 106 ],版权所有(2020)威立出版集团; (d) 转载自文献[ 112 ],版权所有(2019)威立出版集团
Figure 7.
Applications of 2D QSs in solid-state light emitting device. (a) Vertical cavity surface-emitting lasers based on GQSs[
104
];(b)white lasers with V2C MXene quantum sheets (MQSs)[
110
]; (c) stretchable and broadband cavity-free laser devices based on MoS2
QSs[
106
]; (d) white-light-emitting diodes based on histidine-doped MoS2
QSs[
112
]. (a) Reproduced with permission ref. [
104
]. Copyright 2019, American Chemical Society. (b) Reproduced with permission ref. [
110
]. Copyright 2019, Wiley-VCH. (c) Reproduced with permission ref. [
106
]. Copyright 2020, Wiley-VCH. (d) Reproduced with permission ref. [
[1] | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. doi: 10.1126/science.1102896 |
[2] | ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials, 2017, 2(2): 16098. doi: 10.1038/natrevmats.2016.98 |
[3] | TAN CH L, CAO X H, WU X J, et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chemical Reviews, 2017, 117(9): 6225-6331. doi: 10.1021/acs.chemrev.6b00558 |
[4] | XU Y H, WANG X X, ZHANG W L, et al. Recent progress in two-dimensional inorganic quantum dots[J]. Chemical Society Reviews, 2018, 47(2): 586-625. doi: 10.1039/C7CS00500H |
[5] |
ASHTON M, PAUL J, SINNOTT S B,
et al. Topology-scaling identification of layered solids and stable exfoliated 2D materials[J].
Physical Review Letters, 2017, 118(10): 106101.
doi:
|
[6] | WANG X M, JONES A M, SEYLER K L, et al. Highly anisotropic and robust excitons in monolayer black phosphorus[J]. Nature Nanotechnology, 2015, 10(6): 517-521. doi: 10.1038/nnano.2015.71 |
[7] | TAN CH L, ZHANG H. Two-dimensional transition metal dichalcogenide nanosheet-based composites[J]. Chemical Society Reviews, 2015, 44(9): 2713-2731. doi: 10.1039/C4CS00182F |
[8] | NOVOSELOV K S, MISHCHENKO A, CARVALHO A, et al. 2D materials and van der Waals heterostructures[J]. Science, 2016, 353(6298): aac9439. |
[9] | LIU Y, WEISS N O, DUAN X D, et al. Van der Waals heterostructures and devices[J]. Nature Reviews Materials, 2016, 1(9): 16042. |
[10] | HUANG B, CLARK G, NAVARRO-MORATALLA E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit[J]. Nature, 2017, 546(7657): 270-273. doi: 10.1038/nature22391 |
[11] | CAO Y, FATEMI V, FANG S A, et al. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699): 43-50. doi: 10.1038/nature26160 |
[12] |
BONACCORSO F, COLOMBO L, YU G H,
et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J].
Science, 2015, 347(6217): 1246501.
doi:
|
[13] | BHIMANAPATI G R, LIN ZH, MEUNIER V, et al. Recent advances in two-dimensional materials beyond graphene[J]. ACS Nano, 2015, 9(12): 11509-11539. doi: 10.1021/acsnano.5b05556 |
[14] | ZHU F F, CHEN W J, XU Y, et al. Epitaxial growth of two-dimensional stanene[J]. Nature Materials, 2015, 14(10): 1020-1025. doi: 10.1038/nmat4384 |
[15] | DONG R H, ZHANG T, FENG X L. Interface-assisted synthesis of 2D materials: trend and challenges[J]. Chemical Reviews, 2018, 118(13): 6189-6235. doi: 10.1021/acs.chemrev.8b00056 |
[16] | LEE Y H, ZHANG X Q, ZHANG W J, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition[J]. Advanced Materials, 2012, 24(17): 2320-2325. doi: 10.1002/adma.201104798 |
[17] | PENG D, ZHANG L, LI F F, et al. Facile and green approach to the synthesis of boron nitride quantum dots for 2, 4, 6-trinitrophenol sensing[J]. ACS Applied Materials &Interfaces, 2018, 10(8): 7315-7323. |
[18] | NAJAFI L, TAHERI B, MARTíN-GARCÍA B, et al. MoS2 quantum dot/graphene hybrids for advanced interface engineering of a CH3NH3PbI3 perovskite solar cell with an efficiency of over 20%[J]. ACS Nano, 2018, 12(11): 10736-10754. doi: 10.1021/acsnano.8b05514 |
[19] | YONG Y, CHENG X J, BAO T, et al. Tungsten sulfide quantum dots as multifunctional nanotheranostics for in vivo dual-modal image-guided photothermal/radiotherapy synergistic therapy[J]. ACS Nano, 2015, 9(12): 12451-12463. doi: 10.1021/acsnano.5b05825 |
[20] | HA H D, HAN D J, CHOI J S, et al. Dual role of blue luminescent MoS2 quantum dots in fluorescence resonance energy transfer phenomenon[J]. Small, 2014, 10(19): 3858-3862. doi: 10.1002/smll.201400988 |
[21] | ZHOU J B, LIN J H, HUANG X W, et al. A library of atomically thin metal chalcogenides[J]. Nature, 2018, 556(7701): 355-359. doi: 10.1038/s41586-018-0008-3 |
[22] | WANG L, XU X Z, ZHANG L N, et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper[J]. Nature, 2019, 570(7759): 91-95. doi: 10.1038/s41586-019-1226-z |
[23] | XU Y Q, CHEN SH L, DOU ZH P, et al. Robust production of 2D quantum sheets from bulk layered materials[J]. Materials Horizons, 2019, 6(7): 1416-1424. doi: 10.1039/C9MH00272C |
[24] | BAI L Q, XUE N, ZHAO Y F, et al. Dual-mode emission of single-layered graphene quantum dots in confined nanospace: Anti-counterfeiting and sensor applications[J]. Nano Research, 2018, 11(4): 2034-2045. doi: 10.1007/s12274-017-1820-z |
[25] | CAO Y, DONG H F, PU SH T, et al. Photoluminescent two-dimensional SiC quantum dots for cellular imaging and transport[J]. Nano Research, 2018, 11(8): 4074-4081. doi: 10.1007/s12274-018-1990-3 |
[26] | LEI F C, LIU W, SUN Y F, et al. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction[J]. Nature Communications, 2016, 7: 12697. doi: 10.1038/ncomms12697 |
[27] | XU H, ZHANG L, DING Z CH, et al. Edge-functionalized graphene quantum dots as a thickness-insensitive cathode interlayer for polymer solar cells[J]. Nano Research, 2018, 11(8): 4293-4301. doi: 10.1007/s12274-018-2015-y |
[28] | DEB J, PAUL D, SARKAR U. Density functional theory investigation of nonlinear optical properties of T-graphene quantum dots[J]. The Journal of Physical Chemistry A, 2020, 124(7): 1312-1320. doi: 10.1021/acs.jpca.9b10241 |
[29] | BRANDT O, LAGE H, PLOOG K. Large excitonic nonlinearity in InAs quantum sheets[J]. Applied Physics Letters, 1991, 59(5): 576-578. doi: 10.1063/1.105391 |
[30] | BUTCHER P N, MCINNES J A. The energy dependence of the conductance and scattering wave functions of a 2D quantum dot[J]. Journal of Physics:Condensed Matter, 1995, 7(33): 6717-6726. doi: 10.1088/0953-8984/7/33/010 |
[31] |
徐元清, 张勇. 首次实现二维量子片的普适和规模制备[J]. 物理,2019,48(8):522-525.
doi:
10.7693/wl20190808
XU Y Q, ZHANG Y. First demonstration of universal and scalable production of 2D QSs[J].
Physics, 2019, 48(8): 522-525. (in Chinese)
doi:
|
[32] | ALLEN M J, TUNG V C, KANER R B. Honeycomb Carbon: a review of graphene[J]. Chemical Reviews, 2010, 110(1): 132-145. doi: 10.1021/cr900070d |
[33] | ZHOU X J, GUO SH W, ZHONG P, et al. Large scale production of graphene quantum dots through the reaction of graphene oxide with sodium hypochlorite[J]. RSC Advances, 2016, 6(60): 54644-54648. doi: 10.1039/C6RA06012A |
[34] | LI H L, TAY R Y, TSANG S H, et al. Controllable synthesis of highly luminescent boron nitride quantum dots[J]. Small, 2015, 11(48): 6491-6499. doi: 10.1002/smll.201501632 |
[35] | DING X G, PENG F, ZHOU J, et al. Defect engineered bioactive transition metals dichalcogenides quantum dots[J]. Nature Communications, 2019, 10: 41. doi: 10.1038/s41467-018-07835-1 |
[36] | SAMADI M, SARIKHANI N, ZIRAK M, et al. Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives[J]. Nanoscale Horizons, 2018, 3(2): 90-204. doi: 10.1039/C7NH00137A |
[37] |
SPLENDIANI A, SUN L, ZHANG Y B,
et al. Emerging photoluminescence in monolayer MoS2[J].
Nano Letters, 2010, 10(4): 1271-1275.
doi:
|
[38] | WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712. doi: 10.1038/nnano.2012.193 |
[39] | MIRÓ P, AUDIFFRED M, HEINE T. An atlas of two-dimensional materials[J]. Chemical Society Reviews, 2014, 43(18): 6537-6554. doi: 10.1039/C4CS00102H |
[40] | CHURCHILL H O H, JARILLO-HERRERO P. Phosphorus joins the family[J]. Nature Nanotechnology, 2014, 9(5): 330-331. doi: 10.1038/nnano.2014.85 |
[41] | LI L K, YU Y J, YE G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377. doi: 10.1038/nnano.2014.35 |
[42] | WANG Y, WANG X X, XU Y H, et al. Simultaneous synthesis of WO3− x quantum dots and bundle-like nanowires using a one-pot template-free solvothermal strategy and their versatile applications[J]. Small, 2017, 13(13): 1603689. |
[43] | DING D D, GUO W, GUO CH SH, et al. MoO3− x quantum dots for photoacoustic imaging guided photothermal/photodynamic cancer treatment[J]. Nanoscale, 2017, 9(5): 2020-2029. doi: 10.1039/C6NR09046J |
[44] | XUE Q, ZHANG H J, ZHU M SH, et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging[J]. Advanced Materials, 2017, 29(15): 1604847. doi: 10.1002/adma.201604847 |
[45] | LI R J, TANG L B, ZHAO Q, et al. In2S3 quantum dots: preparation, properties and optoelectronic application[J]. Nanoscale Research Letters, 2019, 14: 161. doi: 10.1186/s11671-019-2992-0 |
[46] | HAMER M, TÓVÁRI E, ZHU M J, et al. Gate-defined quantum confinement in InSe-based van der Waals heterostructures[J]. Nano Letters, 2018, 18(6): 3950-3955. doi: 10.1021/acs.nanolett.8b01376 |
[47] | CARTER S G, BRACKER A S, BRYANT G W, et al. Spin-mechanical coupling of an InAs quantum dot embedded in a mechanical resonator[J]. Physical Review Letters, 2018, 121(24): 246801. doi: 10.1103/PhysRevLett.121.246801 |
[48] |
RADISAVLJEVIC B, RADENOVIC A, BRIVIO J,
et al. Single-layer MoS2
transistors[J].
Nature Nanotechnology, 2011, 6(3): 147-150.
doi:
|
[49] |
BANDURIN D A, TYURNINA A V, YU G L,
et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe[J].
Nature Nanotechnology, 2017, 12(3): 223-227.
doi:
|
[50] |
MILLER T S, JORGE A B, SUTER T M,
et al. Carbon nitrides: synthesis and characterization of a new class of functional materials[J].
Physical Chemistry Chemical Physics, 2017, 19(24): 15613-15638.
doi:
|
[51] |
ALTAVILLA C, SARNO M, CIAMBELLI P. A novel wet chemistry approach for the synthesis of hybrid 2D free-floating single or multilayer nanosheets of MS2@oleylamine (M=Mo, W)[J].
Chemistry of Materials, 2011, 23(17): 3879-3885.
doi:
|
[52] | ARSLAN O, BELKOURA L, MATHUR S. Swift synthesis, functionalization and phase-transfer studies of ultrastable, visible light emitting oleate@ZnO quantum dots[J]. Journal of Materials Chemistry C, 2015, 3(45): 11965-11973. doi: 10.1039/C5TC03377B |
[53] | LI X ZH, FANG Y Y, WANG J, et al. High-yield electrochemical production of large-sized and thinly layered NiPS3 flakes for overall water splitting[J]. Small, 2019, 15(30): 1902427. doi: 10.1002/smll.201902427 |
[54] | GOPALAKRISHNAN D, DAMIEN D, LI B, et al. Electrochemical synthesis of luminescent MoS2 quantum dots[J]. Chemical Communications, 2015, 51(29): 6293-6296. doi: 10.1039/C4CC09826A |
[55] | WANG W J, YU J C, SHEN ZH R, et al. g-C3N4 quantum dots: direct synthesis, upconversion properties and photocatalytic application[J]. Chemical Communications, 2014, 50(70): 10148-10150. doi: 10.1039/C4CC02543A |
[56] | CHENG ZH ZH, SHIFA T A, WANG F M, et al. High-yield production of monolayer FePS3 quantum sheets via chemical exfoliation for efficient photocatalytic hydrogen evolution[J]. Advanced Materials, 2018, 30(26): 1707433. doi: 10.1002/adma.201707433 |
[57] | WANG Y, LIU Y, ZHANG J F, et al. Cryo-mediated exfoliation and fracturing of layered materials into 2D quantum dots[J]. Science Advances, 2017, 3(12): e1701500. doi: 10.1126/sciadv.1701500 |
[58] | ZHANG J F, ZHU T Y, WANG Y, et al. Self-assembly of 0D/2D homostructure for enhanced hydrogen evolution[J]. Materials Today, 2020, 36: 83-90. doi: 10.1016/j.mattod.2020.02.006 |
[59] | HAO Y, SU W, HOU L X, et al. Monolayer single crystal two-dimensional quantum dots via ultrathin cutting and exfoliating[J]. Science China Materials, 2020, 63(6): 1046-1053. doi: 10.1007/s40843-019-1270-x |
[60] | HAN CH CH, ZHANG Y, GAO P, et al. High-yield production of MoS2 and WS2 quantum sheets from their bulk materials[J]. Nano Letters, 2017, 17(12): 7767-7772. doi: 10.1021/acs.nanolett.7b03968 |
[61] | SYNNATSCHKE K, CIESLIK P A, HARVEY A, et al. Length- and thickness-dependent optical response of liquid-exfoliated transition metal dichalcogenides[J]. Chemistry of Materials, 2019, 31(24): 10049-10062. doi: 10.1021/acs.chemmater.9b02905 |
[62] | ZHANG X, LAI ZH CH, LIU ZH D, et al. A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots[J]. Angewandte Chemie International Edition, 2015, 54(18): 5425-5428. doi: 10.1002/anie.201501071 |
[63] | LIU Y, LIANG CH L, WU J J, et al. Reflux pretreatment-mediated sonication: a new universal route to obtain 2D quantum dots[J]. Materials Today, 2019, 22: 17-24. doi: 10.1016/j.mattod.2018.06.007 |
[64] | XU Y Q, CHANG J Q, LIANG C, et al. Tailoring multi-walled carbon nanotubes into graphene quantum sheets[J]. ACS Applied Materials &Interfaces, 2020, 12(42): 47784-47791. |
[65] | LIANG CH, SUI X Y, WANG A CH, et al. Controlled production of MoS2 full-scale nanosheets and their strong size effects[J]. Advanced Materials Interfaces, 2020, 7(24): 2001130. doi: 10.1002/admi.202001130 |
[66] | AN T C, TANG J, ZHANG Y Y, et al. Photoelectrochemical conversion from graphitic C3N4 quantum dot decorated semiconductor nanowires[J]. ACS Applied Materials &Interfaces, 2016, 8(20): 12772-12779. |
[67] |
TANG L B, JI R B, LI X M,
et al. Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots[J].
ACS Nano, 2014, 8(6): 6312-6320.
doi:
|
[68] | KIM S, HWANG S W, KIM M K, et al. Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape[J]. ACS Nano, 2012, 6(9): 8203-8208. doi: 10.1021/nn302878r |
[69] | REN J, WEBER F, WEIGERT F, et al. Influence of surface chemistry on optical, chemical and electronic properties of blue luminescent carbon dots[J]. Nanoscale, 2019, 11(4): 2056-2064. doi: 10.1039/C8NR08595A |
[70] | LI L L, JI J, FEI R, et al. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots[J]. Advanced Functional Materials, 2012, 22(14): 2971-2979. doi: 10.1002/adfm.201200166 |
[71] | ZHOU M, LOU X W, XIE Y. Two-dimensional nanosheets for photoelectrochemical water splitting: possibilities and opportunities[J]. Nano Today, 2013, 8(6): 598-618. doi: 10.1016/j.nantod.2013.12.002 |
[72] | LIU ZH K, LAU S P, YAN F. Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing[J]. Chemical Society Reviews, 2015, 44(15): 5638-5679. doi: 10.1039/C4CS00455H |
[73] | MANIKANDAN A, CHEN Y Z, SHEN C C, et al. A critical review on two-dimensional quantum dots (2D QDs): from synthesis toward applications in energy and optoelectronics[J]. Progress in Quantum Electronics, 2019, 68: 100226. doi: 10.1016/j.pquantelec.2019.100226 |
[74] |
SK M A, ANANTHANARAYANAN A, HUANG L,
et al. Revealing the tunable photoluminescence properties of graphene quantum dots[J].
Journal of Materials Chemistry C, 2014, 2(34): 6954-6960.
doi:
|
[75] | KWON W, KIM Y H, LEE C L, et al. Electroluminescence from graphene quantum dots prepared by amidative cutting of tattered graphite[J]. Nano Letters, 2014, 14(3): 1306-1311. doi: 10.1021/nl404281h |
[76] | JIN S H, KIM D H, JUN G H, et al. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups[J]. ACS Nano, 2013, 7(2): 1239-1245. doi: 10.1021/nn304675g |
[77] | ZHU X Q, XIANG J X, LI J, et al. Tunable photoluminescence of MoS2 quantum dots passivated by different functional groups[J]. Journal of Colloid and Interface Science, 2018, 511: 209-214. doi: 10.1016/j.jcis.2017.09.118 |
[78] | BASKO D M, DUCHEMIN I, BLASE X. Optical properties of graphene quantum dots: the role of chiral symmetry[J]. 2D Materials, 2020, 7(2): 025041. doi: 10.1088/2053-1583/ab7688 |
[79] | NIU X H, LI Y H, SHU H B, et al. Revealing the underlying absorption and emission mechanism of nitrogen doped graphene quantum dots[J]. Nanoscale, 2016, 8(46): 19376-19382. doi: 10.1039/C6NR06447G |
[80] | YEH T F, TENG C Y, CHEN S J, et al. Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination[J]. Advanced Materials, 2014, 26(20): 3297-3303. doi: 10.1002/adma.201305299 |
[81] | TANG J M, SAKAMOTO M, OHTA H, et al. 1% defect enriches MoS2 quantum dot: catalysis and blue luminescence[J]. Nanoscale, 2020, 12(7): 4352-4358. doi: 10.1039/C9NR07612C |
[82] | QU D, SUN Z CH, ZHENG M, et al. Three colors emission from S, N Co-doped graphene quantum dots for visible light H2 production and bioimaging[J]. Advanced Optical Materials, 2015, 3(3): 360-367. doi: 10.1002/adom.201400549 |
[83] | ZHANG SH, JIA X F, WANG E K. Facile synthesis of optical pH-sensitive molybdenum disulfide quantum dots[J]. Nanoscale, 2016, 8(33): 15152-15157. doi: 10.1039/C6NR04726B |
[84] |
AUTERE A, JUSSILA H, DAI Y Y,
et al. Nonlinear optics with 2D layered materials[J].
Advanced Materials, 2018, 30(24): 1705963.
doi:
|
[85] | LI J L, BAO H CH, HOU X L, et al. Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy[J]. Angewandte Chemie International Edition, 2012, 51(8): 1830-1834. doi: 10.1002/anie.201106102 |
[86] | SUN J H, GU Y J, LEI D Y, et al. Mechanistic understanding of excitation-correlated nonlinear optical properties in MoS2 nanosheets and nanodots: the role of exciton resonance[J]. ACS Photonics, 2016, 3(12): 2434-2444. doi: 10.1021/acsphotonics.6b00682 |
[87] | LIU Q, GUO B D, RAO Z Y, et al. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging[J]. Nano Letters, 2013, 13(6): 2436-2441. doi: 10.1021/nl400368v |
[88] | COX J D, SILVEIRO I, DE ABAJO F J G. Quantum effects in the nonlinear response of graphene plasmons[J]. ACS Nano, 2016, 10(2): 1995-2003. doi: 10.1021/acsnano.5b06110 |
[89] | COX J D, DE ABAJO F J G. Plasmon-enhanced nonlinear wave mixing in nanostructured graphene[J]. ACS Photonics, 2015, 2(2): 306-312. doi: 10.1021/ph500424a |
[90] | GRIGORENKO A N, POLINI M, NOVOSELOV K S. Graphene plasmonics[J]. Nature Photonics, 2012, 6(11): 749-758. doi: 10.1038/nphoton.2012.262 |
[91] | LOW T, CHAVES A, CALDWELL J D, et al. Polaritons in layered two-dimensional materials[J]. Nature Materials, 2017, 16(2): 182-194. doi: 10.1038/nmat4792 |
[92] | WANG Y W, LIU S, ZENG B W, et al. Ultraviolet saturable absorption and ultrafast carrier dynamics in ultrasmall black phosphorus quantum dots[J]. Nanoscale, 2017, 9(14): 4683-4690. doi: 10.1039/C6NR09235G |
[93] | CHEN X, PONRAJ J S, FAN D Y, et al. An overview of the optical properties and applications of black phosphorus[J]. Nanoscale, 2020, 12(6): 3513-3534. doi: 10.1039/C9NR09122J |
[94] | XU Y H, WANG ZH T, GUO ZH N, et al. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots[J]. Advanced Optical Materials, 2016, 4(8): 1223-1229. doi: 10.1002/adom.201600214 |
[95] |
LU S B, MIAO L L, GUO Z N,
et al. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material[J].
Optics Express, 2015, 23(9): 11183-11194.
doi:
|
[96] | LU L, TANG X, CAO R, et al. Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical kerr media with enhanced stability[J]. Advanced Optical Materials, 2017, 5(17): 1700301. doi: 10.1002/adom.201700301 |
[97] | WANG SH X, YU H H, ZHANG H J, et al. Broadband few-layer MoS2 saturable absorbers[J]. Advanced Materials, 2014, 26(21): 3538-3544. doi: 10.1002/adma.201306322 |
[98] | ZHANG Y, WANG J J, BALLANTINE K E, et al. Hybrid plasmonic nanostructures with unconventional nonlinear optical properties[J]. Advanced Optical Materials, 2014, 2(4): 331-337. doi: 10.1002/adom.201300503 |
[99] | WANG F, ROZHIN A G, SCARDACI V, et al. Wideband-tuneable, nanotube mode-locked, fibre laser[J]. Nature Nanotechnology, 2008, 3(12): 738-742. doi: 10.1038/nnano.2008.312 |
[100] | BAO Q L, ZHANG H, NI ZH H, et al. Monolayer graphene as a saturable absorber in a mode-locked laser[J]. Nano Research, 2011, 4(3): 297-307. doi: 10.1007/s12274-010-0082-9 |
[101] | SU L M, FAN X, YIN T, et al. Inorganic 2D luminescent materials: structure, luminescence modulation, and applications[J]. Advanced Optical Materials, 2020, 8(1): 1900978. doi: 10.1002/adom.201900978 |
[102] | ZHENG J L, YANG ZH H, SI C, et al. Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability[J]. ACS Photonics, 2017, 4(6): 1466-1476. doi: 10.1021/acsphotonics.7b00231 |
[103] | WANG X T, CUI Y, LI T, et al. Recent advances in the functional 2D photonic and optoelectronic devices[J]. Advanced Optical Materials, 2019, 7(3): 1801274. doi: 10.1002/adom.201801274 |
[104] | LEE Y J, YEH T W, ZOU CH, et al. Graphene quantum dot vertical cavity surface-emitting lasers[J]. ACS Photonics, 2019, 6(11): 2894-2901. doi: 10.1021/acsphotonics.9b00976 |
[105] | 孙俊杰, 陈飞, 何洋, 等. 新型过渡金属硫化物在超快激光中的应用[J]. 中国光学,2020,13(4):647-659. doi: 10.37188/CO.2019-0241 SUN J J, CHEN F, HE Y, et al. Application of emerging transition metal dichalcogenides in ultrafast lasers[J]. Chinese Optics, 2020, 13(4): 647-659. (in Chinese) doi: 10.37188/CO.2019-0241 |
[106] | YANG Y F, HU H W, WU M J, et al. Stretchable and broadband cavity-free lasers based on all 2D metamaterials[J]. Advanced Optical Materials, 2020, 8(7): 1901326. doi: 10.1002/adom.201901326 |
[107] |
GHIDIU M, LUKATSKAYA M R, ZHAO M Q,
et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J].
Nature, 2014, 516(7529): 78-81.
doi:
|
[108] | DING L, WEI Y Y, LI L B, et al. MXene molecular sieving membranes for highly efficient gas separation[J]. Nature Communications, 2018, 9: 155. doi: 10.1038/s41467-017-02529-6 |
[109] | JIANG Q, WU CH SH, WANG ZH J, et al. MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit[J]. Nano Energy, 2018, 45: 266-272. doi: 10.1016/j.nanoen.2018.01.004 |
[110] | HUANG D P, XIE Y, LU D ZH, et al. Demonstration of a white laser with V2C MXene-based quantum dots[J]. Advanced Materials, 2019, 31(24): 1901117. |
[111] | ZHANG H, ROGERS J A. Recent advances in flexible inorganic light emitting diodes: from materials design to integrated optoelectronic platforms[J]. Advanced Optical Materials, 2019, 7(2): 1800936. doi: 10.1002/adom.201800936 |
[112] | LU G ZH, WU M J, LIN T N, et al. Electrically pumped white-light-emitting diodes based on histidine-doped MoS2 quantum dots[J]. Small, 2019, 15(30): 1901908. doi: 10.1002/smll.201901908 |